精英家教网 > 高中数学 > 题目详情
如图,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,侧棱与底面成锐角α,点B1在底面上的射影D落在BC边上.

(1)求证:AC⊥平面BB1C1C;

(2)当α为何值时,AB1⊥BC1,且使D点恰为BC的中点?并说明理由;

(3)当AB1⊥BC1,且D为BC中点时,若BC=2,四棱锥A-BB1C1C的体积为,求二面角A-B1C1-C的大小.

第19题图

答案:(1)∵B1D⊥平面ACB,∴B1D⊥AC,

∵AC⊥BC,∴AC⊥平面BB1C1C.

(2)因为AC⊥平面BB1C1C,所以要使AB1⊥BC1,只要BC1⊥B1C,又BB1C1C是平行四边形,只要BB1C1C是菱形,另外要使D为BC中点,因B1D⊥BC,所以只要三角形B1BC为等边三角形即可,即当α=60°时满足题目要求.

(3)取B1C1的中点M,连接AM、MC,如图所示.因为△C1B1C是等边三角形,所以CM⊥B1C1

第19题图

由题意知∠AMC是二面角A-B1C1-C的平面角,因为四棱锥A-BB1C1C的体积为

所以,·AC·BC·B1D=,即×AC×2×=AC=1,

∴tan∠AMC=∠AMC=30°

即二面角A-B1C1-C的大小为30°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(甲)如图,已知斜三棱柱ABC-A1B1C1的侧面A1C⊥底面ABC,∠ABC=90°,BC=2,AC=2
3
,又AA1⊥A1C,AA1=A1C.
(1)求侧棱A1A与底面ABC所成的角的大小;
(2)求侧面A1B与底面所成二面角的大小;
(3)求点C到侧面A1B的距离.
(乙)在棱长为a的正方体OABC-O'A'B'C'中,E,F分别是棱AB,BC上的动点,且AE=BF.
(1)求证:A'F⊥C'E;
(2)当三棱锥B'-BEF的体积取得最大值时,求二面角B'-EF-B的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1的各棱长均为2,侧棱与底面所成的角为
π3
,顶点B1在底面ABC上的射影D在AB上.
(1)求证:侧面ABB1A1⊥底面ABC;
(2)证明:B1C⊥AB;
(3)求二面角B1-BC-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1的各棱长均为2,侧棱与底面所成角为
π3
,顶点B1在底面ABC上的射影D在AB上.
(1)求证:侧面ABB1A1⊥底面ABC;
(2)证明:B1C⊥C1A;
(3)求二面角B1-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)如图,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,侧棱与底面所成的角为θ,且
AB1⊥BC1,点B1在底面上的射影D在BC上.
(I)若D点是BC的中点,求θ;
(Ⅱ)若cosθ=
13
,且AC=BC=AA1=a,求二面角C-AB-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州二模)如图,已知斜三棱柱ABC-A1B1C1中,点B1在底面ABC上的射影落在BC上,CA=CB=a,AB=
2
a

(1)求证:AC⊥平面BCC1B1
(2)当BB1与底面ABC所成的角为60°,且AB1⊥BC1时,求点B1到平面AC1的距离.

查看答案和解析>>

同步练习册答案