精英家教网 > 高中数学 > 题目详情
18.已知流程图如图所示,该程序运行后,为使输出的b值为16,则循环体的判断框内①处应填(  )
A.a>3?B.a≥3?C.a≤3?D.a<3?

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算变量b的值,并输出,模拟程序的运行,对程序运行过程中各变量的值进行分析,不难得到输出结果.

解答 解:a=1时进入循环,此时b=21=2,a=2时,
再进入循环此时b=22=4,a=3,
再进入循环此时b=24=16,
∴a=4时应跳出循环,
∴循环满足的条件为a≤3?
∴故选:C.

点评 算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=Asin(ωx+φ)(A,ω>0,|φ|<$\frac{π}{2}$)的图象在y轴右侧的第一个最高点为P($\frac{1}{3}$,2),在y轴右侧与x轴的第一个交点为R($\frac{5}{6}$,0).
(1)求函数y的解析式;
(2)已知方程f(x)-m=0在区间[-$\frac{1}{2},\frac{2}{3}}$]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0.
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点p(2,c)处有相同的切线(p为切点),求实数a,b的值.
(2)令h(x)=f(x)+g(x),若函数h(x)的单调减区间为[-$\frac{a}{2}$,-$\frac{\sqrt{b}}{3}$];
①求函数h(x)在区间(-∞,-1]上的最大值M(a).
②若|h(x)|≤3在x∈[-2,0]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在当今社会,随科技的进步,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y(单位:千套)与销售价格x(单位:元/套)满足的关系式y=$\frac{a}{x-2}$+4(x-6)2,其中2<x<6,a为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(Ⅰ)求a的值;
(Ⅱ)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x的值,使网校每日销售套题所获得的利润最大.(保留1位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x≥0}\end{array}\right.$,则z=x+2y的最大值为(  )
A.-2B.2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列程序框表示一个算法输入和输出信息的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.阅读如图所示的程序框图,若输入的k=10,则该算法的功能是(  )
A.计算1+21+22+…+210的和B.计算1+21+22+…+29的和
C.计算1+3+7+…+(29-1)的和D.计算1+3+7+…+(210-1)的和

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)的部分图象如图所示.向图中的矩形区域随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为33,由此可估计${∫}_{0}^{1}$f(x)dx的值约为(  )
A.$\frac{99}{100}$B.$\frac{3}{10}$C.$\frac{9}{10}$D.$\frac{10}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知关于x的方程x2-(bcosA)x+acosB=0的两根之积等于两根之和,且边a,b为△ABC的两内角A,B所对的边,则△ABC是(  )
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

同步练习册答案