分析 通过a1,a5,a17成等比数列,计算可得a1=2d,进而可得等比数列{akn}的公比q=$\frac{{a}_{5}}{{a}_{1}}$,从等差数列、等比数列两个角度写出${a}_{{k}_{n}}$的表达式,计算即得结论.
解答 解:设等差数列{an}的公差为d,
根据题意可得:a1,a5,a17成等比数列,
∴(a1+4d)2=a1(a1+16d),
整理得:2d2=da1,
∵d≠0,∴a1=2d,
∴q=$\frac{{a}_{5}}{{a}_{1}}$=$\frac{{a}_{1}+4d}{{a}_{1}}$=3,
∴${a}_{{k}_{n}}$=${a}_{{k}_{1}}$•qn-1=a1•qn-1=a1•3n-1,
又${a}_{{k}_{n}}$=${a}_{{k}_{1}}$+(kn-1)d=a1+(kn-1)•$\frac{{a}_{1}}{2}$,
∴a1+(kn-1)•$\frac{{a}_{1}}{2}$=a1•3n-1,
∵an≠0,
∴kn=2•3n-1-1.
点评 本题考查求数列的通项及求和,考查运算求解能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{10}$ | B. | 1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{11}$ | ||
| C. | 1+$\frac{1}{2×1}$+$\frac{1}{3×2×1}$+…+$\frac{1}{10×9×…×3×2×1}$ | D. | 1+$\frac{1}{2×1}$+$\frac{1}{3×2×1}$+…+$\frac{1}{11×10×…×3×2×1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com