
解:(1)证明:连接AF,
∵在矩形ABCD中,AD=4,AB=2,F是线段BC的中点,
∴FC=CD,∴△FCD是等腰直角三角形,
∴∠DFC=45°,同理可得∠AFB=45°,
∴AF⊥FD.
又∵PA⊥面ABCD,∴PA⊥FD,∵AF∩PA=A
∴FD⊥平面PAF,∴PF⊥FD.(6分)
(2)在AP上存在点G,
且AG=

AP,使得EG∥平面PFD,
证明:取AD中点I,取AI中点H,连接BI,EH,EG,GH,
∵DI∥BF,DI=BF,∴四边形BFDI是平行四边形,
∴BI∥FD
又∵E、H分别是AB、AI的中点,
∴EH∥BI,∴EH∥FD
而EH?平面PFD,∴EH∥平面PFD
∵

=

=

,
∴GH∥PD
而GH?平面PFD,
∴HG∥平面PFD,又∵EH∩GH=H
∴平面EHG∥平面PFD
∴EG∥平面PFD,从而G为所求.
由PD与面ABCD所成角为30°,∴∠PDA=30°,
在直角三角PAD中,∴AP=

=

,
∴AG=

=

.
分析:(1)证明:连接AF,要证PF⊥FD,只要证FD⊥平面PAF,只要证PA⊥FD,AF⊥FD即可.
(2)取AD中点I,取AI中点H,连接BI,EH,EG,GH,易知四边形BFDI是平行四边形,所以BI∥FD,再由E、H分别是AB、AI的中点,得到EH∥BI,由公理4可得EH∥FD,所以EH∥平面PFD,由

=

=

,所以GH∥PD,有HG∥平面PFD,转化为平面EHG∥平面PFD,得到EG∥平面PFD.
点评:本题主要考查线线,线面,面面平行,垂直关系的转化与应用,属中档题.