精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3 ,b﹣c=2,cosA=﹣
(1)求a和sinC的值;
(2)求cos(2A+ )的值.

【答案】
(1)解:在三角形ABC中,由cosA=﹣ ,可得sinA= ,△ABC的面积为3 ,可得:

可得bc=24,又b﹣c=2,解得b=6,c=4,由a2=b2+c2﹣2bccosA,可得a=8,

,解得sinC=


(2)解:cos(2A+ )=cos2Acos ﹣sin2Asin = =
【解析】(1)通过三角形的面积以及已知条件求出b,c,利用正弦定理求解sinC的值;(2)利用两角和的余弦函数化简cos(2A+ ),然后直接求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,若函数的导函数的图象与轴交于 两点,其横坐标分别为 ,线段的中点的横坐标为,且 恰为函数的零点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个二位号码中选取,小明利用如图所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第四个被选中的红色球号码为( )

81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85

06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49

A. 12 B. 33 C. 06 D. 16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A1B1C1D1中,M,N分别为棱AB,DD1的中点,异面直线A1M和C1N所成的角为(

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三棱锥P﹣ABC中,CM=2PM,CN=2NB,对于以下结论:
①二面角B﹣PA﹣C大小的取值范围是( ,π);
②若MN⊥AM,则PC与平面PAB所成角的大小为
③过点M与异面直线PA和BC都成 的直线有3条;
④若二面角B﹣PA﹣C大小为 ,则过点N与平面PAC和平面PAB都成 的直线有3条.
正确的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为2,△BCD为正三角形,现将△BCD沿BD向上折起,折起后的点C记为C′,且CC′= ,连接CC′,E为CC′的中点.

文科:
(1)求证:AC′∥平面BDE;
(2)求证:CC′⊥平面BDE;
(3)求三棱锥C′﹣BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中, 平面 ,点在棱上,且.建立如图所示的空间直角坐标系.

(1)当时,求异面直线的夹角的余弦值;

(2)若二面角的平面角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的椭圆方程:
(1)长轴在x轴上,长轴长等于12,离心率等于
(2)椭圆经过点(﹣6,0)和(0,8);
(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了增强市民的环境保护组织,某市面向全市征召n名义务宣传志愿者,成立环境保护宣传组织,现按年龄把该组织的成员分成5组:[20,25),[25,30),[30,35),[35,40),[40,45]. 得到的频率分布直方图如图所示,已知该组织的成员年龄在[35,40)内有20人

(1)求该组织的人数;
(2)若从该组织年龄在[20,25),[25,30),[30,35)内的成员中用分层抽样的方法共抽取14名志愿者参加某社区的宣传活动,问应各抽取多少名志愿者?

查看答案和解析>>

同步练习册答案