精英家教网 > 高中数学 > 题目详情
8.设关于x,y的不等式组$\left\{\begin{array}{l}{2x-y+1>0}\\{y-m>0}\\{x+m<0}\end{array}\right.$表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,则m的取值范围是(  )
A.(-∞,$\frac{4}{3}$)B.(-∞,$\frac{1}{3}$)C.(-∞,-$\frac{2}{3}$)D.(-∞,-$\frac{5}{3}$)

分析 作出不等式组对应的平面区域,要使平面区域内存在点点P(x0,y0)满足x0-2y0=2,则平面区域内必存在一个点在直线x-2y=2的下方,由图象可得m的取值范围.

解答 解:作出不等式组对应的平面如图:交点C的坐标为(-m,m),

直线x-2y=2的斜率为$\frac{1}{2}$,斜截式方程为$y=\frac{1}{2}x-1$,
要使平面区域内存在点P(x0,y0)满足x0-2y0=2,
则点C(-m,m)必在直线x-2y=2的下方,
即m$<-\frac{1}{2}m-1$,解得m$<-\frac{2}{3}$.
故选:C.

点评 本题主要考查线性规划的基本应用,利用数形结合是解决本题的关键,综合性较强,属中高档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.定义在R上的奇函数f(x)满足f(x+1)=f(-x),当x∈(0,1)时,f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}|\frac{1}{2}-x|,x≠\frac{1}{2}}\\{0,x=\frac{1}{2}}\end{array}\right.$,则f(x)在区间(1,$\frac{3}{2}$)内是(  )
A.增函数且f(x)>0B.增函数且f(x)<0C.减函数且f(x)>0D.减函数且f(x)<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.$\frac{tan12°-\sqrt{3}}{sin6°sin84°}$+32cos212°的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.2sin210°的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-1D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若a>0,b>0,且$\frac{1}{a}$+$\frac{1}{b}$=2.
(1)求a3+b3的最小值;
(2)是否存在a,b使a+4b=3?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≤0}\\{{x}^{\frac{1}{2}},x>0}\end{array}\right.$,若f(a)>1,则a的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=4x2(x-2)在x∈[-2,2]上的最小值为-$\frac{128}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax2+x-a,a∈R,
(1)若函数f(x)的最大值大于$\frac{17}{8}$,求实数a的取值范围;
(2)解不等式f(x)>1(a∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}是首项为19,公差为-2的等差数列,Sn为{an}的前n项和.
(Ⅰ)求通项an及其前n项和Sn
(Ⅱ)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Tn

查看答案和解析>>

同步练习册答案