精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且数学公式,若E、F分别为PC、BD的中点.
(1)求证:EF∥平面PAD;
(2)求证:平面PDC⊥平面PAD.
(3)求四棱锥P-ABCD的体积VP-ABCD

(1)证明:连接AC,则F是AC的中点,在△CPA中,EF∥PA,…(2分)
∵PA?平面PAD,EF?平面PAD,
∴EF∥平面PAD …(4分)
(2)证明:因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
又CD⊥AD,所以CD⊥平面PAD,…(7分)
又CD?平面PDC,∴平面PAD⊥平面PDC.…(8分)
(3)解:∵,∴PA2+PD2=AD2
,…(10分)
又由(2)可知CD⊥平面PAD,CD=2,…(11分)
,…(13分)
.…(14分)
分析:(1)连接AC,利用三角形中位线的性质,证明EF∥PA,利用线面平行的判定,可得EF∥平面PAD;
(2)面面垂直的性质,证明CD⊥平面PAD,进而可证平面PAD⊥平面PDC;
(3)先计算P-ADC的体积,再计算求四棱锥P-ABCD的体积VP-ABCD
点评:本题考查线面平行,考查面面垂直,考查棱锥体积的计算,解题的关键是掌握线面平行,面面垂直的判定,正确运用棱锥的体积公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案