精英家教网 > 高中数学 > 题目详情

如图,四棱锥S—ABCD的底面是边长为1的正方形,

SD垂直于底面ABCD,SB=.

   (I)求证BCSC;

   (II)求面ASD与面BSC所成二面角的大小;

   (III)设棱SA的中点为M,求异面直线DM与SB所成角的大小.

(I)证明见解析(II)45°(III)90°


解析:

[方法一]:(几何法)

(I)证法一:如图1,∵底面ABCD是正方形,  ∴BC⊥DC.

∵SD⊥底面ABCD,∴DC是SC在平面ABCD上的射影,               

由三垂线定理得BC⊥SC. …………3分

证法二:如图1,∵底面ABCD是正方形,  ∴BC⊥DC.          

∵SD⊥底面ABCD,∴SD⊥BC,又DC∩SD=D,                     图1

∴BC⊥平面SDC,∴BC⊥SC. …………3分

(II)解法一:∵SD⊥底面ABCD,且ABCD为正方形,

∴可把四棱锥S—ABCD补形为长方体A1B1C1S—ABCD,

如图2,面ASD与面BSC所成的二面角就是面ADSA1与面BCSA1所成的二面角,

∵SC⊥BC,BC//A1S, ∴SC⊥A1S,

又SD⊥A1S,∴∠CSD为所求二面角的平面角.

在Rt△SCB中,由勾股定理得SC=,在Rt△SDC中,

由勾股定理得SD=1.

∴∠CSD=45°.即面ASD与面BSC所成的二面角为45°. ……………8分

解法二:如图3,过点S作直线在面ASD上,

∵底面ABCD为正方形,在面BSC上,

为面ASD与面BSC的交线.

∴∠CSD为面ASD与面BSC所成二面角的平面角.

在Rt△SCB中,由勾股定理得SC=,在Rt△SDC中,

 由勾股定理得SD=1.

∴∠CSD=45°.即面ASD与面BSC所成的二面角

为 45°。…8分

(III)解法一:如图3, ∵SD=AD=1,∠SDA=90°, ∴△SDA是等腰直角三角形.

又M是斜边SA的中点,  ∴DM⊥SA. 

∵BA⊥AD,BA⊥SD,AD∩SD=D,∴BA⊥面ASD,SA是SB在面ASD上的射影.

由三垂线定理得DM⊥SB.  ∴异面直线DM与SB所成的角为90°. ……………14分

解法二:如图4,取AB中点P,连结MP,DP.

在△ABS中,由中位线定理得 MP//SB,是异面直线DM与SB所成的角.

∴在△DMP中,有DP2=MP2+DM2, 

即异面直线DM与SB所成的角为90°. ……………14分

[方法二]:(向量法)

解析:如图所示,以D为坐标原点建立直角坐标系,

则D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),

M(,0,),

∵ SB=,DB=,SD=1,∴ S(0,0,1),……………2分

(I)证明:∵ 

=0   ∴ ,即BCSC.……………5分

(II)设二面角的平面角为θ,由题意可知平面ASD的一个法向量为,设平面BSC的法向量为,由

∴ 面ASD与面BSC所成的二面角为45°.……………10分

(III)设异面直线DM与SB所成角为α,

∵ ,SB=(-1,-1,1),得

∴ 异面直线DM与SB所成角为90°.……………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD的底面是边长为3的正方形,SD丄底面ABCD,SB=3
3
,点E、G分别在AB,SG 上,且AE=
1
3
AB  CG=
1
3
SC.
(1)证明平面BG∥平面SDE;
(2)求面SAD与面SBC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•醴陵市模拟)如图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,P为BC边的中点,AD=2,AB=1.SP与平面ABCD所成角为
π4
. 
(1)求证:平面SPD⊥平面SAP;
(2)求三棱锥S-APD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一点,且SE=2EC,SA=6,AB=2.
(1)求证:平面EBD⊥平面SAC;
(2)求三棱锥E-BCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•西城区二模)如图,四棱锥S-ABCD中,平面SAC与底面ABCD垂直,侧棱SA、SB、SC与底面ABCD所成的角均为45°,AD∥BC,且AB=BC=2AD.
(1)求证:四边形ABCD是直角梯形;
(2)求异面直线SB与CD所成角的大小;
(3)求直线AC与平面SAB所成角的大小.

查看答案和解析>>

同步练习册答案