精英家教网 > 高中数学 > 题目详情
已知函数y=loga(3-ax)在[0,2)上是关于x的减函数,则实数a的取值范围为
(1,
3
2
]
(1,
3
2
]
分析:根据复合函数的单调性和对数函数的性质可知a>1,再由t=3-ax在[0,2)上应有t>0,可知3-2a>0.得a<
3
2
解答:解:∵a>0且a≠1,
∴t=3-ax为减函数.
依题意a>1,又t=3-ax在[0,2)上应有t>0,
∴3-2a>0.∴a
3
2

故1<a<
3
2

故答案为:1<a<
3
2
点评:要掌握复合函数的单调性的判定方法:同增异减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=loga(ax2-x)在区间[2,4]上是增函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

7、已知函数y=loga(x+b)的图象如图所示,则a、b的取值范围分别是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(ax2-x)在区间[2,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(x+4)-1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+3=0上,其中m>0,n>0,则
1
m
+
3
n
的最小值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(3a-1)的值恒为正数,则a的取值范围是
1
3
2
3
)∪(1,+∞)
1
3
2
3
)∪(1,+∞)

查看答案和解析>>

同步练习册答案