精英家教网 > 高中数学 > 题目详情
函数f(x)=x2-3x的图象为曲线C1,函数g(x)=4-x2的图象为曲线C2,过x轴上的动点M(a,0)(0≤a≤3)作垂直于x轴的直线分别交曲线C1,C2于A,B两点,则线段AB长度的最大值为(  )
分析:线段AB长度可转化为|f(x)-g(x)|(0≤x≤3),利用二次函数的性质可求其最大值.
解答:解:|AB|=|f(x)-g(x)|=|2x2-3x-4|=|2(x-
3
4
)2-
25
4
|(0≤x≤3),
可知函数|f(x)-g(x)|在[0,
3
4
]上递增,在[
3
4
,3]上递减,
∴|f(x)-g(x)|max=|f(
3
4
)-g(
3
4
)|
=
41
8

即线段AB长度的最大值为
41
8

故选D.
点评:本题考查二次函数的性质及其应用,考查转化思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案