精英家教网 > 高中数学 > 题目详情

【题目】年年底,某城市地铁交通建设项目已经基本完成,为了解市民对该项目的满意度,分别从不同地铁站点随机抽取若干市民对该项目进行评分(满分分),绘制如下频率分布直方图,并将分数从低到高分为四个等级:

满意度评分

低于

60分

60分

到79分

80分

到89分

不低

于90分

满意度等级

不满意

基本满意

满意

非常满意

已知满意度等级为基本满意的有人.

(1)求频率分布于直方图中的值,及评分等级不满意的人数;

(2)在等级为不满意市民中,老年人占,中青年占现从该等级市民中按年龄分层抽取人了解不满意的原因,并从中选取人担任整改督导员,求至少有一位老年督导员的概率;

(3)相关部门对项目进行验收,验收的硬性指标是:市民对该项目的满意指数不低于,否则该项目需进行整改,根据你所学的统计知识,判断该项目能否通过验收,并说明理由.

【答案】(1);评分等级不满意的人数为120;(2) ; (3)满意指数为80.7,故判断该项目能通过验收.

【解析】

(1)根据频率分布直方图计算即可(2)按年龄分层抽取人,则老年人抽取2人,中青年抽取4人,从6人中选取人担任整改督导员的所有可能情况为种,至少有一位老年督导员的对立事件是抽取的都是中青年,共有种,根据对立事件即可求出(3)根据频率分布直方图计算样本平均值,估计市民满意程度平均值,计算满意指数,即可得出结论.

(1)由频率分布直方图知,

解得

设总共调查了个人,则基本满意的为,解得.

不满意的频率为,所以共有人,即不满意的人数为120.

(2)改等级120个市民中按年龄分层抽取人,则老年人抽取2人,中青年抽取4人,从6人中选取人担任整改督导员的所有可能情况为,抽不到老年人的情况为种, 所以至少有一位老年督导员的概率.

(3)所选样本满意程度的平均得分为:

估计市民满意程度的平均得分为

所以市民满意指数为

故该项目能通过验收.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中内动点P(x,y)到圆F:x2+(y﹣1)2=1的圆心F的距离比它到直线y=﹣2的距离小1.
(1)求动点P的轨迹方程;
(2)设点P的轨迹为曲线E,过点F的直线l的斜率为k,直线l交曲线E于A,B两点,交圆F于C,D两点(A,C两点相邻).
①若 =t ,当t∈[1,2]时,求k的取值范围;
②过A,B两点分别作曲线E的切线l1 , l2 , 两切线交于点N,求△ACN与△BDN面积之积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0 , y0)(x0≠0)作斜率为k1 , k2的两条直线分别交抛物线C于A(x1 , y1)B(x2 , y2)两点(P,A,B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠﹣1).
(Ⅰ)求抛物线C的焦点坐标和准线方程;
(Ⅱ)设直线AB上一点M,满足 ,证明线段PM的中点在y轴上;
(Ⅲ)当λ=1时,若点P的坐标为(1,﹣1),求∠PAB为钝角时点A的纵坐标y1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大小;
(2)若b= a,△ABC的面积为 sinAsinB,求sinA及c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0 , y0)(x0≠0)作斜率为k1 , k2的两条直线分别交抛物线C于A(x1 , y1)B(x2 , y2)两点(P,A,B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠﹣1).
(Ⅰ)求抛物线C的焦点坐标和准线方程;
(Ⅱ)设直线AB上一点M,满足 ,证明线段PM的中点在y轴上;
(Ⅲ)当λ=1时,若点P的坐标为(1,﹣1),求∠PAB为钝角时点A的纵坐标y1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的长轴长是短轴长的倍,右焦点为,点分别是该椭圆的上、下顶点,点是直线上的一个动点(与轴交点除外),直线交椭圆于另一点,记直线, 的斜率分别为

(1)当直线过点时,求的值;

(2)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在(0,+∞)上单调函数,且对x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,则方程f(x)﹣f′(x)=e的实数解所在的区间是(
A.(0,
B.( ,1)
C.(1,e)
D.(e,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人在连续7天的定点投篮的分数统计如下:在上述统计数据的分析中,一部分计算如右图所示的算法流程图(其中 是这7个数据的平均数),则输出的S的值是(

观测次数i

1

2

3

4

5

6

7

观测数据ai

5

6

8

6

8

8

8


A.1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=|sinx|+|cosx|的最小正周期为m,函数g(x)=sin3x﹣sinx的最大值为n,则mn=

查看答案和解析>>

同步练习册答案