精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sin θ,θ∈[0,2π).

(1)求曲线C的直角坐标方程;

(2)在曲线C上求一点D,使它到直线l:的距离最短,并求出点D的直角坐标.

【答案】(1);(2)

【解析】

(1)利用可把圆C的极坐标方程化为普通方程.

(2)利用圆的几何性质即可得到结果

(1)由ρ=2sin θ,θ∈[0,2π),可得ρ2=2ρsin θ.

因为ρ2=x2+y2,ρsin θ=y,

所以曲线C的直角坐标方程为x2+(y-1)2=1.

(2)因为曲线C:x2+(y-1)2=1是以C(0,1)为圆心、1为半径的圆,易知曲线C与直线l相离.

设点D(x0,y0),且点D到直线l:y=-x+5的距离最短,

所以曲线C在点D处的切线与直线l:y=-x+5平行.

即直线CD与l的斜率的乘积等于-1,

×(-)=-1,又x+(y0-1)2=1,

可得x0=- (舍去)或x0,所以y0

即点D的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知{an}是递增的等差数列,且满足a2a4=21,a1+a5=10.

(1)求{an}的通项公式;

(2)若数列{cn}前n项和Cn=an+1,数列{bn}满足bn=2ncn(n∈N*),求{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某种设备的使用年限 ()与所支出的维修费用 (万元)有如下统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

已知.

(1)

(2) 具有线性相关关系,求出线性回归方程;

(3)估计使用年限为10年时,维修费用约是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一则“清华大学要求从 2017级学生开始,游泳达到一定标准才能毕业”的消息在体育界和教育界引起了巨大反响.其实,已有不少高校将游泳列为必修内容.

某中学拟在高一-下学期开设游泳选修课,为了了解高--学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

40

女生

30

合计

已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为.

(1).请将上述列联表补充完整,并判断是否可以在犯错误的概率不超过0.001的前提下认为喜欢游泳与性别有关.

(2)已知在被调查的学生中有6名来自高一(1) 班,其中4名喜欢游泳,现从这6名学生中随机抽取2人,求恰有1人喜欢游泳的概率.

附:

0.10

0.050

0.025

0.010

0.005

0.001

2.706

/td>

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 由经验得知,在某商场付款处排队等候付款的人数及概率如下表

排队人数

0

1

2

3

4

5人以上

概率

0.1

0.16

0.3

0.3

0.1

0.04

(1)至多有2人排队的概率是多少?

(2)至少有2人排队的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则abc的值为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是定义在R上的奇函数,且 为偶函数,对于函数y=f(x)有下列几种描述:①y=f(x)是周期函数②x=π是它的一条对称轴;③(﹣π,0)是它图象的一个对称中心;④当 时,它一定取最大值;其中描述正确的是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A=a1 , a2 , a3 , …,an , 其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的个数.
(Ⅰ)设集合P=2,4,6,8,Q=2,4,8,16,分别求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n , 求证:
(Ⅲ)l(A)是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣2)ex+a(x﹣1)2
(1)讨论f(x)的单调性;
(2)若f(x)有两个零点,求a的取值范围.

查看答案和解析>>

同步练习册答案