精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(2,2cosx),$\overrightarrow{n}$=($\sqrt{3}$sin2x,2cosx),x∈R.
(1)求f(x)的最大值与最小正周期;
(2)已知g(x)的图象与f(x)的图象关于直线x=$\frac{π}{4}$对称,求g(x)在[0,$\frac{π}{2}$]上的值域.

分析 由已知条件结合平面向量的坐标运算可得f(x),再由辅助角公式化积.
(1)由函数解析式求得f(x)的最大值与最小正周期;
(2)由g(x)的图象与f(x)的图象关于直线x=$\frac{π}{4}$对称求得g(x)的解析式,再由x的范围求得相位的范围,则g(x)在[0,$\frac{π}{2}$]上的值域可求.

解答 解:由$\overrightarrow{m}$=(2,2cosx),$\overrightarrow{n}$=($\sqrt{3}$sin2x,2cosx),得
f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$=$2\sqrt{3}sin2x+4co{s}^{2}x$=$2\sqrt{3}sin2x+4×\frac{1+cos2x}{2}$
=$2\sqrt{3}sin2x+2cos2x+2$=$4sin(2x+\frac{π}{6})+2$.
(1)f(x)的最大值为6,最小正周期T=$\frac{2π}{2}=π$;
(2)∵g(x)的图象与f(x)的图象关于直线x=$\frac{π}{4}$对称,
∴g(x)=f($\frac{π}{2}-x$)=$4sin(π-2x+\frac{π}{6})+2$=$4sin(2x-\frac{π}{6})+2$.
∵0$≤x≤\frac{π}{2}$,∴$-\frac{π}{6}≤2x-\frac{π}{6}≤\frac{5π}{6}$,则g(x)∈[0,6].

点评 本题考查平面向量的数量积运算,考查三角函数的图象变换,考查y=Asin(ωx+φ)型函数的图象和性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.命题“?x∈R,使$3_{\;}^x+4_{\;}^x>5_{\;}^x$”的否定为(  )
A.?x∈R,使$3_{\;}^x+4_{\;}^x≤5_{\;}^x$B.?x∈R,使$3_{\;}^x+4_{\;}^x<5_{\;}^x$
C.?x∈R,使$3_{\;}^x+4_{\;}^x>5_{\;}^x$D.?x∈R,使$3_{\;}^x+4_{\;}^x≤5_{\;}^x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若复数z满足(1-i)2z=1(i为虚数单位),则复数z=$\frac{i}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)的图象与函数h(x)=x+$\frac{1}{x}$+2的图象关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)求f(x)在(0,8]内的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)是定义在[5-2a,a]上的奇函数,且当x∈[-5,0)时,f(x)=-x (4-x).
(1)f(x)的解析式;
(2)求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为4,点(2,-$\sqrt{2}}$)在C上
(1)求椭圆C有方程;
(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={-2,-1,0,1,2},B={x|-2<x<2},则A∩B=(  )
A.{-2,-1,0,1,2}B.{-2,-1,0,1}C.{-1,0,1,2}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正数x,y满足x+2$\sqrt{2xy}$≤λ(x+y)恒成立,则实数λ的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简:$\frac{5}{6}$a${\;}^{\frac{1}{2}}$b${\;}^{-\frac{1}{2}}$×(-3a${\;}^{\frac{1}{6}}$b-1)÷(4a${\;}^{\frac{2}{3}}$b-3)${\;}^{\frac{1}{2}}$=-$\frac{5}{4}$${a}^{\frac{1}{3}}$.

查看答案和解析>>

同步练习册答案