精英家教网 > 高中数学 > 题目详情

已知等差数列{an}的首项a1=1,公差d>0,等比数列{bn},满足b2=a2,b3=a5,b4=a14
(1)求数列{an}与{bn}的通项;
(2)设数列{cn}满足cn=2an-18,求数列{cn}的前n项和Sn的最小值,并求出此时n的值.

解:(1)由题意得(1+4d)2=(1+d)(1+13d),d>0解得d=2…(3分)
∴an=2n-1…(4分)
又b2=a2=3,b3=a5=9,
所以{bn}的公比为3,bn=3n-1…(6分)
(2)∵cn=2an-18=4n-20…(7分)
令cn≤0得n≤5…(9分)
所以当n=4或n=5时,sn取最小值-40…(12分)
分析:(1)利用等差数列与等比数列的项数间的关系可求等差数列{an}的通项公式an=2n-1,等比数列{bn}的通项公式bn=3n-1;
(2)从数列{cn}的通项cn=2an-18=4n-20着手,由于c1=-16<0令cn≤0可求得数列{cn}的前n项和Sn的最小值.
点评:本题考查等差数列与等比数列的通项公式,与等差数列的求和,解题的方法是解方程,体现的数学思想是转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案