(本小题满分12分)
已知函数
,其中
。
(1)当
满足什么条件时,
取得极值?
(2)已知
,且
在区间
上单调递增,试用
表示出
的取值范围。
(1)![]()
(2)当
时,
;当
时,
。
(1)由已知得
,令
,得
,
要取得极值,方程
必须有解,
所以△
,即
,此时方程
的根为
,
,
所以
。
当
时,
| x | (-∞,x1) | x 1 | (x1,x2) | x2 | (x2,+∞) |
| f’(x) | + | 0 | - | 0 | + |
| f (x) | 增函数 | 极大值 | 减函数 | 极小值 | 增函数 |
所以
在x 1, x2处分别取得极大值和极小值;
当
时,w.w.w.k.s.5.u.c.o.m
![]()
| x | (-∞,x2) | x 2 | (x2,x1) | x1 | (x1,+∞) |
| f’(x) | - | 0 | + | 0 | - |
| f (x) | 减函数 | 极小值 | 增函数 | 极大值 | 减函数 |
所以
在x 1, x2处分别取得极大值和极小值。
综上,当
满足
时,
取得极值。
(2)要使
在区间
上单调递增,需使
在
上恒成立。
即
恒成立,所以![]()
设
,
,
令
得
或
(舍去),
当
时,
,当
时
,
单调增函数;
当
时
,
单调减函数,
所以当
时,
取得最大,最大值为
。
所以![]()
当
时,
,此时
在区间
恒成立,所以
在区间
上单调递增,当
时
最大,最大值为
,所以![]()
综上,当
时,
;当
时,
。
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com