精英家教网 > 高中数学 > 题目详情
(2009•淄博一模)已知中心在原点、焦点在x轴上的椭圆,其离心率e=
2
2
,且经过抛物线x2=4y的焦点.
(1)求椭圆的标准方程;
(2)若过点B(2,0)的直线l与椭圆交于不同的亮点E、F(E在B、F之间)且
BE
BF
,试求实数λ的取值范围.
分析:(1)设出椭圆的方程,利用椭圆的离心率e=
2
2
,且经过抛物线x2=4y的焦点,求出几何量,即可得到椭圆的方程;
(2)设直线l方程,与椭圆方程联立消去x,根据判别式大于0,可得m的一个范围,设出E,F的坐标,利用向量知识及韦达定理,即可求得实数λ的取值范围.
解答:解:(1)设椭圆方程为
x2
a2
+
y2
b2
=1
(a>b>0)
∵椭圆的离心率e=
2
2
,且经过抛物线x2=4y的焦点
c
a
=
2
2
,b=1

∴a2=2
∴椭圆的标准方程为
x2
2
+y2=1

(2)由题意知l的斜率存在且不为零,
设l方程为x=my+2(m≠0)①,代入
x2
2
+y2=1
,整理得(m2+2)y2+4my+2=0,由△>0得m2>2.
设E(x1,y1),F(x2,y2),则
BE
BF
,(x1-2,y1)=λ(x2-2,y2),
∴y1=λy2
y1+y2=
-4m
m2+2
y1y2=
2
m2+2

(1+λ)2
λ
=
8m2
m2+2
=
8
1+
2
m2

∵m2>2,∴4<
8
1+
2
m2
<8
∴4<
(1+λ)2
λ
<8
∵λ>0
3-2
2
<λ<3+2
2
且λ≠1.
点评:本题主要考查了直线与圆锥曲线的综合问题,考查椭圆的标准方程,考查韦达定理的运用.应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•淄博一模)已知命题p:?x∈R,cosx≤1,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)若不等式组
x-y+5≥0
y≥a
0≤x≤3
表示的平面区域是一个三角形,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=90°,PA=PB,PC=PD
(1)证明平面PAB⊥平面ABCD;
(2)如果AD=1,BC=3,CD=4,且侧面PCD的面积为8,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)已知m,n是不同的直线,α与β是不重合的平面,给出下列命题:
①若m∥α,则m平行与平面α内的无数条直线
②若α∥β,m?α,n?β,则m∥n
③若m⊥α,n⊥β,m∥n,则α∥β
④若α∥β,m?α,则m∥β
上面命题中,真命题的序号是
①③④
①③④
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)f(x)是定义在R上的奇函数,且当x≥0时f(x)=x2,若对任意的x∈[-2-
2
,2+
2
]
不等式f(x+t)≤2f(x)恒成立,则实数t的取值范围是(  )

查看答案和解析>>

同步练习册答案