精英家教网 > 高中数学 > 题目详情
2.下列各函数中,在(-∞,+∞)上为增函数的是(  )
A.y=(0.2)xB.y=4-xC.y=3xD.y=($\frac{1}{\sqrt{2}+1}$)x

分析 由指数函数的单调性,关注底数的范围可得.

解答 解:由指数函数的单调性可得:
选项A,0.2∈(0,1),故函数单调递减,错误;
选项B,可化为y=$(\frac{1}{4})^{x}$,同A可得函数单调递减,错误;
选项C,3>1,故函数单调递增,故正确;
选项D,$\frac{1}{\sqrt{2}+1}$=$\frac{\sqrt{2}-1}{(\sqrt{2})^{2}-1}$=$\sqrt{2}-1$∈(0,1),故函数单调递减,错误.
故选:C

点评 本题考查指数函数的单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知α,β是平面,m,n是直线.下列命题中不正确的是(  )
A.若m∥n,m⊥α,则n⊥αB.若m∥α,α∩β=n,则m∥n
C.若m⊥α,m⊥β,则α∥βD.若m⊥α,m∩β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若y=asinx+b的最大值为3,最小值为1,则ab=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)在R上单调递增,且函数f(x-1)是定义在R上的奇函数,则不等式f(x+3)<0的解集为(  )
A.(-∞,-3)B.(4,+∞)C.(-∞,1)D.(-∞,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.?ABCD中,已知A(-1,0),B(3,0),C(1,-5),求D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知正方体ABCD-A′B′C′D′的棱长为a,点P是平面AA′D′D的中心,Q为B′D′上一点,且PQ∥平面AA′B′B,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=2cosx+|cosx|,画出函数f(x)的草图,求函数f(x)的定义域、值域、单调区间,并判断函数f(x)的奇偶性和周期性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{{x}^{2}+2x+a}{x}$,x∈[1,+∞).
(1)当a=$\frac{1}{4}$时,求函数f(x)的最小值;
(2)若对任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围;
(3)若关于x的方程f(x)=a在[2,3]上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.用符号“∈”或“∉”填空:
(1)设A为所有亚洲国家组成的集合,则:
中国∈A,美国∉A,印度∈A,英国∉A;
(2)若A={x|x2=x},则-1∉A;
(3)若B={x|x2+x-6=0},则3∉B;
(4)若C={x∈N|1≤x≤10,},则8∈C,9.1∉C.

查看答案和解析>>

同步练习册答案