精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,a1=120,d=-4,若Sn≤an(n≥2),则n的最小值为______.
在等差数列{an}中,由a1=120,d=-4,
得:an=a1+(n-1)d=120-4(n-1)=124-4n,
Sn=na1+
n(n-1)d
2
=120n+
-4n(n-1)
2
=122n-2n2
由Sn≤an,得:122n-2n2≤124-4n.
即n2-63n+62≥0.解得:n≤1或n≥62.
因为n≥2,所以n≥62.
所以n的最小值为62.
故答案为62.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案