分析 求出$\overrightarrow{AB}$=(1,2),$\overrightarrow{AC}$=(6,4),利用向量的数量积公式求出cosA,进而可得sinA,再求出△ABC的面积.
解答 解:∵A(1,1),B(2,3),C(7,5),
∴$\overrightarrow{AB}$=(1,2),$\overrightarrow{AC}$=(6,4),
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\sqrt{5}•\sqrt{52}$•cosA=6+8=14,
∴cosA=$\frac{7}{\sqrt{65}}$,
∴sinA=$\frac{4}{\sqrt{65}}$,
∴S△ABC=$\frac{1}{2}$•$\sqrt{5}•\sqrt{52}$•$\frac{4}{\sqrt{65}}$=4.
点评 本题考查向量的数量积公式,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 13 | B. | 14 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{2}$,1) | B. | [-$\frac{1}{2}$,1] | C. | (-1,$\frac{1}{2}$) | D. | [-1,$\frac{1}{2}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com