精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长为4,F1,F2分别为其左、右焦点,抛物线y2=-4x的焦点为F1
(Ⅰ)求椭圆C的方程;
(Ⅱ)过焦点F1的直线l与椭圆C交于P,Q两点,求△F2PQ面积的最大值.
(Ⅰ)由抛物线y2=-4x的焦点为F1(-1,0)可知c=1,
∵2a=4∴a=2,∴b2=a2-c2=3
所以椭圆C的方程为:
x2
4
+
y2
3
=1
 …(4分)
(Ⅱ)因为过点F1(-1,0)的直线与椭圆C交于P,Q两点,
可设直线l方程为:x=my-1,P(x1,y1),Q(x2,y2),则
x=my-1
x2
4
+
y2
3
=1
,得(4+3m2)y2-6my-9=0,∴
y1+y2=
6m
3m2+4
y1y2=-
9
3m2+4

所以S F1PQ=
1
2
|F1F2||y1-y2|=
12
m2+1
3m2+4

m2+1
=t,则t≥1,所以S F1PQ=
12
3t+
1
t

而3t+
1
t
在[1,+∞)上单调递增,
所以S F1PQ=
12
3t+
1
t
≤3,当t=1时取等号,
即当m=0时,△F2PQ的面积最大值为3…(8分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案