精英家教网 > 高中数学 > 题目详情
设y=ln-ln2,则y′等于(    )

A.x-                 B.--                  C.-                   D.x

解析:y=-lnx-ln2,则y′=-.

答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2(a-1)ln(x-1)+x-(4a-2)lnx,其中实数a为常数.
(Ⅰ)当a=2时,求函数f(x)的单调递减区间;
(Ⅱ)设函数y=f(ex)有极大值点和极小值点分别为x1、x2,且x2-x1>ln2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ex+1)-ax(a∈R).
①若曲线y=f(x)在x=0处与直线x+y=b相切,求a,b的值;
②设x∈[-ln2,0]时,f(x)在x=0处取得最大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:设函数y=f(x)在(a,b)内可导,f'(x)为f(x)的导数,f''(x)为f'(x)的导数即f(x)的二阶导数,若函数y=f(x) 在(a,b)内的二阶导数恒大于等于0,则称函数y=f(x)是(a,b)内的下凸函数(有时亦称为凹函数).已知函数f(x)=xlnx
(1)证明函数f(x)=xlnx是定义域内的下凸函数,并在所给直角坐标系中画出函数f(x)=xlnx的图象;
(2)对?x1,x2∈R+,根据所画下凸函数f(x)=xlnx图象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]与x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小关系;
(3)当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,证明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

设U=R,A={x|<0},B={y|y=ln|x|,x∈A},则A∩B=    (    )

A.(1,ln2)        B.[0,2)              C.(-2,-1)        D.(-1,ln2)

查看答案和解析>>

同步练习册答案