7£®Ä³ÇøÒª½øÐÐÖÐѧÉúÀºÇò¶Ô¿¹Èü£¬ÎªÕù¶á×îºóÒ»¸öС×éÈüÃû¶î£¬¼×¡¢ÒÒ¡¢±ûÈýÖ§ÀºÇò¶ÓÒª½øÐбÈÈü£¬¸ù¾Ý¹æÔò£ºÃ¿Á½Ö§¶ÓÎéÖ®¼ä¶¼Òª±ÈÈüÒ»³¡£»Ã¿³¡±ÈÈüʤÕßµÃ3·Ö£¬¸ºÕßµÃ0·Ö£¬Ã»ÓÐÆ½¾Ö£¬»ñµÃµÚÒ»ÃûµÄ½«¶áµÃÕâ¸ö²ÎÈüÃû¶î£®ÒÑÖªÒÒ¶Óʤ±û¶ÓµÄ¸ÅÂÊΪ$\frac{1}{5}$£¬¼×¶Ó»ñµÃµÚÒ»ÃûµÄ¸ÅÂÊΪ$\frac{1}{6}$£¬ÒÒ¶Ó»ñµÃµÚÒ»ÃûµÄ¸ÅÂÊΪ$\frac{1}{15}$£®
£¨¢ñ£©Çó¼×¶Ó·Ö±ðսʤÒҶӺͱû¶ÓµÄ¸ÅÂÊP1£¬P2£»
£¨¢ò£©ÉèÔڸôαÈÈüÖУ¬¼×¶ÓµÃ·ÖΪX£¬ÇóXµÄ·Ö²¼Áм°ÆÚÍû£®

·ÖÎö £¨1£©ÔĶÁµÃ³ö¶Ó»ñµÃµÚÒ»Ãû£¬Ôò¼×¶ÓʤÒÒ¶ÓÇÒ¼×¶Óʤ±û¶Ó£¬¼×¶Ó»ñµÃµÚÒ»ÃûµÄ¸ÅÂÊΪ${P_1}¡Á{P_2}=\frac{1}{6}$£» ÒÒ¶Ó»ñµÃµÚÒ»ÃûµÄ¸ÅÂÊΪ$£¨1-{P_1}£©¡Á\frac{1}{5}=\frac{1}{15}$£¬Çó½â·½³Ì×é¼´¿É£®
£¨2£©¸ù¾ÝÌâÒâµÃ³öX¿ÉÄÜÈ¡µÄֵΪ£º0£¬3£¬6£¬·Ö±ðÇó³ö¸ÅÂʵóö·Ö²¼Áм´¿É£¬Çó½âÊýѧÆÚÍû£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒ⣬¼×¶Ó»ñµÃµÚÒ»Ãû£¬Ôò¼×¶ÓʤÒÒ¶ÓÇÒ¼×¶Óʤ±û¶Ó£¬
¡à¼×¶Ó»ñµÃµÚÒ»ÃûµÄ¸ÅÂÊΪ${P_1}¡Á{P_2}=\frac{1}{6}$£»     ¢Ù
ͬÀí£ºÒÒ¶Ó»ñµÃµÚÒ»ÃûµÄ¸ÅÂÊΪ$£¨1-{P_1}£©¡Á\frac{1}{5}=\frac{1}{15}$£®¢Ú
Óɢ٢ڵãº${P_1}=\frac{2}{3}£¬{P_2}=\frac{1}{4}$£®
ËùÒÔ¼×¶ÓսʤÒҶӵĸÅÂÊΪ$\frac{2}{3}$£¬¼×¶Óսʤ±û¶ÓµÄ¸ÅÂÊ$\frac{1}{4}$£®
£¨¢ò£©$P£¨X=0£©=£¨1-\frac{2}{3}£©£¨1-\frac{1}{4}£©=\frac{1}{4}$£»
$P£¨X=3£©=\frac{2}{3}£¨1-\frac{1}{4}£©+£¨1-\frac{2}{3}£©\frac{1}{4}=\frac{7}{12}$£»
$P£¨X=6£©=\frac{2}{3}¡Á\frac{1}{4}=\frac{1}{6}$£®
XµÄ·Ö²¼ÁÐΪ£º

X036
P$\frac{1}{4}$$\frac{7}{12}$$\frac{1}{6}$
$E£¨X£©=0¡Á\frac{1}{4}+3¡Á\frac{7}{12}+6¡Á\frac{1}{6}=\frac{11}{4}$£®

µãÆÀ ±¾Ì⿼²ìÁ˹ŵä¸ÅÂÊÔÚʵ¼ÊÎÊÌâÖеÄÓ¦Ó㬿¼²ìÁËѧÉúµÄÔĶÁ·ÖÎöÄÜÁ¦£¬¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®º¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨A£¾0£¬¦Ø£¾0£¬-$\frac{¦Ð}{2}$£¼¦Õ£¼$\frac{¦Ð}{2}$£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£» 
£¨2£©½â²»µÈʽf£¨x£©¡Ü1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÆøÏóÒâÒåÉÏ´Ó´º¼¾½øÈëÏᄉıê־Ϊ£º¡°Á¬Ðø5ÌìµÄÈÕÆ½¾ùζȾù²»µÍÓÚ22¡æ¡±£®ÏÖÓмס¢ÒÒ¡¢±û¡¢¶¡ËĵØÁ¬Ðø5ÌìµÄÈÕÆ½¾ùζȵļǼÊý¾Ý£¨¼Ç¼Êý¾Ý¶¼ÊÇÕýÕûÊý£©£º
¢Ù¼×µØ£º5¸öÊý¾ÝµÄÖÐλÊýΪ24£¬ÖÚÊýΪ22£»
¢ÚÒҵأº5¸öÊý¾ÝµÄÖÐλÊýΪ27£¬×ÜÌå¾ùֵΪ24£»
¢Û±ûµØ£º5¸öÊý¾ÝµÄ×ÜÌå¾ùֵΪ24£¬ÇÒ¼«²îСÓÚ»òµÈÓÚ4£»
¢Ü¶¡µØ£º5¸öÊý¾ÝÖÐÓÐÒ»¸öÊý¾ÝÊÇ32£¬×ÜÌå¾ùֵΪ26£¬×ÜÌå·½²îΪ10.8£®
Ôò¿Ï¶¨½øÈëÏᄉĵØÇøÓТ٢ܣ¨Ð´³öËùÓÐÕýÈ·±àºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{lo{g}_{2}£¨x-1£©£¬}&{x£¾1}\\{2x-1£¬}&{x¡Ü1}\end{array}\right.$Ôò f£¨2£©=0£»Èôf£¨a£©=-1£¬Ôòa=$\frac{3}{2}$»ò0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªf£¨x£©=ex£¨sinx-cosx£©£¨0¡Üx¡Ü2015¦Ð£©£¬ÇóÔòº¯Êýf£¨x£©µÄ¸÷¼«Ð¡ÖµÖ®ºÍΪ-$\frac{{e}^{2¦Ð}£¨1-{e}^{2014¦Ð}£©}{1-{e}^{2¦Ð}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=ax2-$\frac{4}{3}ax+b£¬f£¨1£©=2£¬{f^'}$£¨1£©=1£®
£¨1£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©Çóf£¨x£©ÔÚ£¨1£¬2£©´¦µÄÇÐÏß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®É輯ºÏA={£¨x£¬y£©|£¨x-4£©2+y2=1}£¬B={£¨x£¬y£©|£¨x-t£©2+£¨y-at+2£©2=1}£¬Èç¹ûÃüÌâ¡°?t¡ÊR£¬A¡ÉB¡Ù∅¡±ÊÇÕæÃüÌ⣬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[1£¬4]B£®[0£¬$\frac{4}{3}$]C£®[0£¬$\frac{1}{2}$]D£®£¨-¡Þ£¬0]¡È£¨$\frac{4}{3}$£¬+¡Þ]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=ex£¨x+1£©£¬Ôòf¡ä£¨1£©µÈÓÚ£¨¡¡¡¡£©
A£®eB£®2eC£®3eD£®4e

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÇúÏßy=x2+1Ôڵ㣨-1£¬2£©´¦µÄÇÐÏß·½³ÌΪ2x+y=0£»£¨ÓÃÖ±Ïß·½³ÌÒ»°ãʽ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸