精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)(x∈R)满足f(﹣x)=4﹣f(x),函数 ,若曲线y=f(x)与y=g(x)图象的交点分别为(x1 , y1),(x2 , y2),(x3 , y3),…,(xm , ym),则 (结果用含有m的式子表示).

【答案】2m
【解析】解:因为f(﹣x)=4﹣f(x), 所以y=f(x)关于点(0,2)对称,
因为
所以g(﹣x)= + = +
所以g(x)+g(x)=4,
所以y=g(x)关于点(0,2)对称,
所以曲线y=f(x)与y=g(x)图象的交点关于点(0,2)对称,
所以xi+yi=2,
所以 2m,
所以答案是:2m.
【考点精析】解答此题的关键在于理解函数的值的相关知识,掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数.

(1)求函数的解析式;

(2)解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: =1(a>b>0)的离心率为 ,过右焦点F2(c,0)垂直于x轴的直线与椭圆交于A,B两点且|AB|= ,又过左焦点F1(﹣c,0)任作直线l交椭圆于点M
(1)求椭圆C的方程
(2)椭圆C上两点A,B关于直线l对称,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P1(x1 , y1),P2(x2 , y2),P3(x3 , y3),P4(x4 , y4),P5(x5 , y5),P6(x6 , y6)是抛物线C:y2=2px(p>0)上的点,F是抛物线C的焦点,若|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|=36,且x1+x2+x3+x4+x5+x6=24,则抛物线C的方程为(
A.y2=4x
B.y2=8x
C.y2=12x
D.y2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆

(Ⅰ)若圆C与x轴相切,求圆C的方程;

(Ⅱ)已知,圆与x轴相交于两点(点在点的左侧).过点任作一条直线与圆相交于两点A,B.问:是否存在实数a,使得=?若存在,求出实数a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定实数 t,已知命题 p:函数 有零点;命题 q: x∈[1,+∞) ≤4-1.

(Ⅰ)当 t=1 时,判断命题 q 的真假;

(Ⅱ)若 pq 为假命题,求 t 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程为 (φ为参数),以原点为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求曲线C的极坐标方程;
(Ⅱ)已知倾斜角为135°且过点P(1,2)的直线l与曲线C交于M,N两点,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱ABC﹣A1B1C1中,AA1B1B为正方形,BB1C1C为菱形,B1C⊥AC1
(Ⅰ)求证:平面AA1B1B⊥平面BB1C1C;
(Ⅱ)若D是CC1中点,∠ADB是二面角A﹣CC1﹣B的平面角,求直线AC1与平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学准备在开学时举行一次高三年级优秀学生座谈会,拟请20名来自本校高三(1)(2)(3)(4)班的学生参加,各班邀请的学生数如下表所示;

班级

高三(1)

高三(2)

高三(3)

高三(4)

人数

4

6

4

6

(1)从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一班级的概率;

(2)从这20名学生中随机选出3 名学生发言,设来自高三(3)的学生数为,求随机变量的概率分布列和数学期望.

查看答案和解析>>

同步练习册答案