精英家教网 > 高中数学 > 题目详情

【题目】如图1,在高为2的梯形中, ,过分别作 ,垂足分别为。已知,将梯形沿同侧折起,得空间几何体,如图2。

(1)若,证明:

(2)若,证明:

(3)在(1),(2)的条件下,求三棱锥的体积。

【答案】(1)见解析;(2)见解析;(3).

【解析】试题分析:

(1)由题意可得,则,即为直角三角形;

(2)利用题意可得,结合线面平行的判断定理可得

(3)利用题意可得AE为三棱锥的高,结合体积公式可得.

试题解析:

(1)证明:由已知得,四边形为正方形,且边长为2,则在图2中,

由已知,可得

,所以

,所以

,所以,即

(2)证明:如图,取AC的中点G,连接OG,DG,则

则四边形DEOG为平行四边形,所以

,所以

(3)解:因为三棱锥的体积

,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以边长为4的等比三角形的顶点以及边的中点为左、右焦点的椭圆过两点.

1)求该椭圆的标准方程;

2)过点轴不垂直的直线交椭圆于两点,求证直线的交点在一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形中,,沿将梯形折起,使得平面⊥平面.

(1)证明:

(2)求三棱锥的体积;

(3)求直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1求函数的极值点;

2若函数在区间[2,6]内有极值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇

函数,且相邻两对称轴间的距离为.

时,求的单调递减区间;

将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),

得到函数的图象.时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一批产品需要原材料500吨,每吨原材料可创造利润12万元,该公司通过设备升级,生产这批产品所需原材料减少了吨,且每吨原材料创造的利润提高了;若将少用的吨原材料全部用于生产公司新开发的产品,每吨原材料创造的利润为万元,其中a>0

1)若设备升级后生产这批A产品的利润不低于原来生产该批A产品的利润,求的取值范围;

2)若生产这批B产品的利润始终不高于设备升级后生产这批A产品的利润,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足,其中,命题实数满足

|x-3|≤1 .

(1)若为真,求实数的取值范围;

(2)若的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱柱的中点在线段

1求证

2是否存在点使二面角等于若存在的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足,其中,命题实数满足

|x-3|≤1 .

(1)若为真,求实数的取值范围;

(2)若的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案