精英家教网 > 高中数学 > 题目详情

【题目】如图,梯形中,,沿将梯形折起,使得平面⊥平面.

(1)证明:

(2)求三棱锥的体积;

(3)求直线

【答案】(1)见解析;(2);(3).

【解析】试题分析:(1)取BF中点为M,ACBD交点为O,连结MO,ME,由已知结合三角形中位线定理可得四边形OCEM为平行四边形,然后利用线面平行的判定得答案;
(2)由线面垂直的性质定理可得BC⊥平面DEF,然后把三棱锥D-BEF的体积转化为三棱锥B-DEF的体积求解.

(3)分析条件得连结,,由求解即可.

试题解析:

(1)证明 如图,取BF的中点,设交点为,连接.

由题设知,

,故四边形为平行四边形,

.

,

.

(2)解 ∵平面⊥平面,平面∩平面

⊥平面.

∴三棱锥的体积为

.

(3)∵平面⊥平面,平面∩平面,又

,

又在正方形

连结,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知O为原点,A,B,C为平面内的三点.求证:

(1) 若A,B,C三点共线,则存在实数α,β,且α+β=1,

(2) 若存在实数α,β,且α+β=1,使得,则A,B,C三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱平面 ,点的中点

(1)证明: 平面

(2)在线段上找一点,使得直线所成角的为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低1元时,一星期多卖出5件.

1)将一星期的商品销售利润表示成的函数;

2)如何定价才能使一个星期的商品销售利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为 成等差数列。

(1证明为等比数列,并求数列的通项;

(2)设,且,证明

(3)在(2)小问的条件下,若对任意的,不等式恒成立,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的动直线与圆相交于两点,与直线相交于.

(1)当垂直时,求直线的方程,并判断圆心与直线的位置关系;

(2)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

1若曲线在点处的切线斜率为,求实数的值;

2有两个零点,求的取值范围;

3时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在高为2的梯形中, ,过分别作 ,垂足分别为。已知,将梯形沿同侧折起,得空间几何体,如图2。

(1)若,证明:

(2)若,证明:

(3)在(1),(2)的条件下,求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20161216科幻片《侠盗一号》上映上映至今全球累计票房高达8亿美金.为了了解娄底观众的满意度某影院随机调查了本市观看影片的观众并用“10分制对满意度进行评分分数越高满意度越高若分数不低于9则称该观众为满意观众”.现从调查人群中随机抽取12.如图所示的茎叶图记录了他们的满意度分数(以小数点前的一位数字为茎小数点后的一位数字为叶).

(1)求从这12人中随机选取1该人不是满意观众的概率;

(2)从本次所记录的满意度评分大于9.1满意观众中随机抽取2求这2人得分不同的概率.

查看答案和解析>>

同步练习册答案