【题目】已知椭圆
:
的左右焦点为
,
,
是椭圆上半部分的动点,连接
和长轴的左右两个端点所得两直线交
正半轴于
,
两点(点
在
的上方或重合).
![]()
(1)当
面积
最大时,求椭圆的方程;
(2)当
时,若
是线段
的中点,求直线
的方程;
(3)当
时,在
轴上是否存在点
使得
为定值,若存在,求
点的坐标,若不存在,说明理由.
【答案】(1)
;(2)
;(3)存在,点
,使得
为定值.
【解析】
(1)由题意可得点A与点B重合时,
面积最大,借助基本不等式即可求出b的值,可得椭圆方程;
(2)设出点
,则
:
,
:
,求出点A的坐标,点B的坐标,根据B是线段
的中点,用中点坐标公式列方程,可得M点坐标,进而求出直线
的方程;
(3)设
,
,求出点A的坐标,根据向量的数量积即可求出
解:(1)由已知:
![]()
,
当且仅当
时等号成立;
则:
,
此时椭圆方程为:
;
(2)点
在
轴或其左侧,则图形如本题图,设
,那么:
:
,
:
,
令![]()
得:
,
,
是线段
的中点,
则:
,
解得:
,则
,
则:
:
,即:
;
(3)
:
,设
,
,
若点
在
轴左侧,则同上,
,
,
,
![]()
![]()
,
此时,
,
;
综上,故存在点
使得
为定值.
科目:高中数学 来源: 题型:
【题目】某环线地铁按内、外环线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异).
(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10分钟,求内环线列车的最小平均速度;
(2)新调整的方案要求内环线列车平均速度为25千米/小时,外环线列车平均速度为30千米/小时.现内、外环线共有18列列车全部投入运行,要使内外环线乘客的最长候车时间之差不超过1分钟,向内、外环线应各投入几列列车运行?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋中装有9个大小形状完全相同的球,球的编号分别为1,2,…,9,随机摸出两个球,则两个球的编号之和大于9的概率是______(结果用分数表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第31届夏季奥林匹克运动会于2016年8月5日至8月21日在巴西里约热内卢举行.如表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).
第30届伦敦 | 第29届北京 | 第28届雅典 | 第27届悉尼 | 第26届亚特兰大 | |
中国 | 38 | 51 | 32 | 28 | 16 |
俄罗斯 | 24 | 23 | 27 | 32 | 26 |
(1)根据表格中两组数据在答题卡上完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(2)如表是近五届奥运会中国代表团获得的金牌数之和
(从第26届算起,不包括之前已获得的金牌数)随时间
变化的数据:
时间 | 26 | 27 | 28 | 29 | 30 |
金牌数之和 | 16 | 44 | 76 | 127 | 165 |
作出散点图如图:
![]()
由图可以看出,金牌数之和
与时间
之间存在线性相关关系,请求出
关于
的线性回归方程,并预测从第26届到第32届奥运会时中国代表团获得的金牌数之和为多少?
附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由A,B,C,…等7人担任班级的7个班委.
(1)若正、副班长两职只能由A,B,C这三人中选两人担任,则有多少种分工方案?
(2)若正、副班长两职至少要选A,B,C这三人中的1人担任,有多少种分工方案?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图在△AOB中,∠AOB=90°,AO=2,OB=1,△AOC可以通过△AOB以直线AO为轴旋转得到,且OB⊥OC,点D为斜边AB的中点.
![]()
(1)求异面直线OB与CD所成角的余弦值;
(2)求直线OB与平面COD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某热力公司每年燃料费约24万元,为了“环评”达标,需要安装一块面积为
(
)(单位:平方米)可用15年的太阳能板,其工本费为
(单位:万元),并与燃料供热互补工作,从此,公司每年的燃料费为
(
为常数)万元,记
为该公司安装太阳能板的费用与15年的燃料费之和.
(1)求
的值,并建立
关于
的函数关系式;
(2)求
的最小值,并求出此时所安装太阳能板的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高三年级有400名学生参加月考,用简单随机抽样的方法抽取了一个容量为50的样本,得到数学成绩的频率分布直方图如图所示.
![]()
(1)求第四个小矩形的高;
(2)估计本校在这次统测中数学成绩不低于120分的人数;
(3)已知样本中,成绩在
内的有两名女生,现从成绩在这个分数段的学生中随机选取2人做学习交流,求恰好男生女生各有一名的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com