精英家教网 > 高中数学 > 题目详情

【题目】A,B,C,…7人担任班级的7个班委.

(1)若正、副班长两职只能由A,B,C这三人中选两人担任,则有多少种分工方案?

(2)若正、副班长两职至少要选A,B,C这三人中的1人担任,有多少种分工方案?

【答案】(1);(2)

【解析】

(1)先安排正、副班长,再安排其他职务的班委,用分步乘法计数原理计算即可;(2)先对7个人担任班级的7个班委进行全排列,然后去掉A,B,C这三人中没有人担任正、副班长的情况,即可得到答案。

(1)先安排正、副班长有种方法,再安排其余职务有种方法,依分步乘法计数原理,共有=720种分工方案.

(2)7人的任意分工方案有A,B,C三人中无一人任正、副班长的分工方案有种,因此A,B,C三人中至少有1人任正、副班长的方案有=3600种.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:

甲商场:顾客转动如图所示的圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形的圆心角均为,边界忽略不计)即为中奖.

乙商场:从装有2个白球、2个蓝球和2个红球(这些球除颜色外完全相同)的盒子中一次性摸出2,若摸到的是2个相同颜色的球,则为中奖.

试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中是实数常数,).

(1)若,函数的图象关于点成中心对称,求的值;

(2)若函数满足条件(1),且对任意,总有,求的取值范围;

(3)若,函数是奇函数,,且对任意时,不等式恒成立,求负实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】无穷数列满足:,记表示3个实数中的最大数).

1)若,求数列的前项和

2)若,当时,求满足条件的取值范围;

3)证明:对于任意正整数,必存在正整数,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面分别为的中点.

(Ⅰ)证明:平面平面

(Ⅱ)若,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点为是椭圆上半部分的动点,连接和长轴的左右两个端点所得两直线交正半轴于两点(点的上方或重合).

(1)当面积最大时,求椭圆的方程;

(2)当时,若是线段的中点,求直线的方程;

(3)当时,在轴上是否存在点使得为定值,若存在,求点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.

(1)试写出y关于x的函数关系式;

(2)当m=640米时,需新建多少个桥墩才能使y最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角梯形的下底与等腰直角三角形的斜边重合,(如图(1)所示),将此图形沿折叠成直二面角,连接,得到四棱锥(如图(2)所示).

1)线段上是否存在点,使平面?若存在,求出;若不存在,说明理由;

2)在(1)的条件下,求平面与平面的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市环保部门对市中心每天的环境污染情况进行调查研究后,发现一天中环境综合污染指数与时刻(时)的关系为,其中是与气象有关的参数,且.若用每天的最大值为当天的综合污染指数,并记作

1)令,求的取值范围;

2)求的表达式,并规定当时为综合污染指数不超标,求当在什么范围内时,该市市中心的综合污染指数不超标.

查看答案和解析>>

同步练习册答案