【题目】已知函数(其中,,,是实数常数,).
(1)若,函数的图象关于点成中心对称,求,的值;
(2)若函数满足条件(1),且对任意,总有,求的取值范围;
(3)若,函数是奇函数,,,且对任意时,不等式恒成立,求负实数的取值范围.
【答案】(1)(2)(3)
【解析】
(1)将化为,类比的图象得对称中心,对应相等可求得结果;(2)整理可得:;当时符合题意;时由单调性可知不合题意;当时,可知只需,从而得到的范围;综合三种情况得到结果;(3)根据奇偶性和函数值可得:,根据得到,根据单调性求解出的最小值,则根据求得结果.
(1)
类比函数的图象,可知函数的图象的对称中心是
又函数的图象的对称中心
(2)由(1)知,
依据题意,对任意,恒有.
①当时,,符合题意
②当时,对任意,则
恒有,不符合题意;
③当时,函数在上是单调递减函数,且满足
因此,只需即可
解得:
综上所述,实数的范围
(3)依据题设:,解得:
于是
由,得,
因此
函数在是增函数
.
所求负实数的取值范围
科目:高中数学 来源: 题型:
【题目】定义:若存在常数,使得对定义域D内的任意两个不同的实数,均有:成立,则称在D上满足利普希茨(Lipschitz)条件.
(1)试举出一个满足利普希茨(Lipschitz)条件的函数及常数的值,并加以验证;
(2)若函数在上满足利普希茨(Lipschitz)条件,求常数的最小值;
(3)现有函数,请找出所有的一次函数,使得下列条件同时成立:
①函数满足利普希茨(Lipschitz)条件;
②方程的根也是方程的根,且;
③方程在区间上有且仅有一解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型工厂有台大型机器,在个月中,台机器至多出现次故障,且每台机器是否出现故障是相互独立的,出现故障时需名工人进行维修.每台机器出现故障的概率为.已知名工人每月只有维修台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得万元的利润,否则将亏损万元.该工厂每月需支付给每名维修工人万元的工资.
(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有名维修工人,求工厂每月能正常运行的概率;
(2)已知该厂现有名维修工人.
(ⅰ)记该厂每月获利为万元,求的分布列与数学期望;
(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘名维修工人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若函数是增函数,则称函数具有性质A.
若,求的解析式,并判断是否具有性质A;
判断命题“减函数不具有性质A”是否真命题,并说明理由;
若函数具有性质A,求实数k的取值范围,并讨论此时函数在区间上零点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若函数为偶函数,求实数的值;
(2)若,,且函数在上是单调函数,求实数的值;
(3)若,若当时,总有,使得,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋中装有9个大小形状完全相同的球,球的编号分别为1,2,…,9,随机摸出两个球,则两个球的编号之和大于9的概率是______(结果用分数表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国内某知名企业为适应发展的需要,计划加大对研发的投入,据了解,该企业原有100名技术人员,年人均投入万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员名(且),调整后研发人员的年人均投入增加%,技术人员的年人均投入调整为万元.
(1)要使这名研发人员的年总投入恰好与调整前100名技术人员的年总投入相同,求调整后的技术人员的人数;
(2)是否存在这样的实数,使得调整后,在技术人员的年人均投入不减少的情况下,研发人员的年总投入始终不低于技术人员的年总投入?若存在,求出的范围,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由A,B,C,…等7人担任班级的7个班委.
(1)若正、副班长两职只能由A,B,C这三人中选两人担任,则有多少种分工方案?
(2)若正、副班长两职至少要选A,B,C这三人中的1人担任,有多少种分工方案?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com