ÉèÊýÁÐ{an}µÄ¸÷ÏÊÇÕýÊý£¬ÇÒ¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐa13+a23+a33+¡­+=Sn2£¬ÆäÖÐSnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£®
£¨I£©ÇóÖ¤£ºan2=2Sn-an£»
£¨II£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨III£©Èôbn=3n+£¨-1£©n-1¦Ë•2an£¨¦ËΪ·ÇÁã³£Êý£¬n¡ÊN*£©£¬ÎÊÊÇ·ñ´æÔÚÕûÊý¦Ë£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐbn+1£¾bn£¬Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º±¾Ì⿼²éµÄÊÇÊýÁÐÓë²»µÈʽµÄ×ÛºÏÌ⣮ÔÚ½â´ðʱ£º
£¨I£©Ê×ÏÈÌÖÂÛn=1ºÍn¡Ý2ʱÁ½ÖÖÇé¿ö£¬½áºÏͨÏîÓëÇ°nÏîºÍÖ®¼äµÄ¹Øϵͨ¹ý×÷²î¡¢±äÐλ¯¼ò¼´¿É»ñµÃÎÊÌâµÄ½â´ð£»
£¨II£©ÀûÓã¨1£©µÄ½áÂÛд³öÏàÁÚµÄÒ»Ïî¶ÔÓ¦µÄ¹Øϵʽ£¬×¢Òâ±£Ö¤n¡Ý2£®ÓÃ×÷²î·¨¿É·ÖÎöÖªÊýÁÐanΪµÈ²îÊýÁУ¬½ø¶ø¼´¿É»ñµÃÊýÁеÄͨÏʽ£»
£¨III£©Ê×ÏȼÙÉè´æÔÚ¦ËʹµÃÂú×ãÌâÒ⣬Ȼºó¼ÆË㻯¼òbn+1-bn£¬ÔÙ½áºÏºã³ÉÁ¢ÎÊÌâ½øÐÐת»¯£¬½«ÎÊÌâת»¯Îª£º(-1)n-1•¦Ë£¼(
3
2
)
n-1
¶ÔÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£®È»ºó·ÖnΪÆæżÊýÌÖÂÛ¼´¿É»ñµÃ¦ËµÄ·¶Î§£¬ÔÙ½áºÏΪÕûÊý¼´¿É»ñµÃÎÊÌâµÄ½â´ð£®
½â´ð£º½â£º
£¨I£©Ö¤Ã÷£ºµ±n=1ʱ£¬a13=a12£¬¡ßa1£¾0£¬¡àa1=1£®
µ±n¡Ý2ʱ£¬a13+a23+¡­+an3=Sn2£¬
a13+a23+¡­+an-13=Sn-12£¬
Á½Ê½Ïà¼õÖª£ºan3=Sn2-Sn-12=an£¨2a1+2a2+¡­+2an-1+an£©£¬
¡ßan£¾0
¡àan2=2a1+2a2+¡­+2an-1+2an-an
¡àan2=2Sn-an
×ÛÉÏ¿ÉÖª£º¡àan2=2Sn-an£¬n¡ÊN*£®
£¨II£©¡ßan2=2Sn-an
¡àµ±n¡Ý2ʱ£¬an-12=2Sn-1-an-1£¬
¡àan2-an-12=2£¨Sn-Sn-1£©-an+an-1£¬
¡à£¨an+an-1£©£¨an-an-1-1£©=0
ÓÖ¡ßan+an-1£¾0£¬¡àan-an-1-1=0
¡àan-an-1=1
ËùÒÔÊýÁÐanΪÊ×ÏîΪ1£¬¹«²îΪ1µÄµÈ²îÊýÁУ®
¡àÊýÁÐ{an}µÄͨÏʽΪ£ºan=n£¬n¡ÊN*£®
£¨III£©¼ÙÉè´æÔÚ¦ËʹµÃ¶ÔÈÎÒâµÄn¡ÊN*£¬ÓÐbn+1£¾bn£®
¡ßan=n£¬n¡ÊN*
¡àbn=3n+£¨-1£©n-1•¦Ë2an3n +(-1)n-1•¦Ë•2n£¬
¡àbn+1-bn=[3n+1+£¨-1£©n•¦Ë•2n+1]-[3n+£¨-1£©n-1•¦Ë•2n]
¡àbn+1-bn=2•3n-3¦Ë£¨-1£©n-1•2n£¾0
¡à(-1)n-1•¦Ë£¼(
3
2
)
n-1
¶ÔÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£®
µ±n=2k-1£¬k¡ÊN*ʱ£¬¦Ë£¼(
3
2
)
2k-2
¶ÔÈÎÒâµÄk¡ÊN*ºã³ÉÁ¢£®
¡à¦Ë£¼1
µ±n=2k£¬k¡ÊN*ʱ£¬¦Ë£¾-(
3
2
)
2k-1
¶ÔÈÎÒâµÄk¡ÊN*ºã³ÉÁ¢£®
¡à¦Ë£¾-
3
2

¡à-
3
2
£¼¦Ë£¼1£¬Ó֡ߦˡÙ0ÇҦˡÊZ
¡à¦Ë=-1£®
¡à´æÔÚÕûÊý¦Ë=-1£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*ÓÐbn+1£¾bn³ÉÁ¢£®
µãÆÀ£º±¾Ì⿼²éµÄÊÇÊýÁÐÓë²»µÈʽµÄ×ÛºÏÌ⣮ÔÚ½â´ðµÄ¹ý³Ìµ±Öгä·ÖÌåÏÖÁËÊýÁÐͨÏîÓëÇ°nÏîºÍµÄ֪ʶ¡¢·ÖÀàÌÖÂÛµÄ֪ʶÒÔ¼°ºã³ÉÁ¢ÎÊÌâµÄ½â´ð¹æÂÉ£®ÖµµÃͬѧÃÇÌå»áºÍ·´Ë¼£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄ¸÷ÏÊÇÕýÊý£¬ÇÒ¶ÔÈÎÒân¡ÊN+£¬¶¼ÓÐa13+a23+a33+¡­+an3=Sn2£¬ÆäÖÐSnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£®
£¨¢ñ£©ÇóÖ¤£ºan2=2Sn-an£»
£¨¢ò£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©Éèbn=3n+£¨-1£©n-1¦Ë•2an£¨¦ËΪ·ÇÁãÕûÊý£¬n¡ÊN*£©ÊÔÈ·¶¨¦ËµÄÖµ£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐbn+1£¾bn³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄ¸÷ÏÊÇÕýÊý£¬SnÊÇÆäÇ°nÏîºÍ£¬ÇÒ¶ÔÈÎÒân¡ÊN*¶¼ÓÐan2=2Sn-an£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èôbn=£¨2n+1£©2an£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýʵÊý£¬bn=log2an£¬ÈôÊýÁÐ{bn}Âú×ãb2=0£¬bn+1=bn+log2p£¬ÆäÖÐpΪÕý³£Êý£¬ÇÒp¡Ù1£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÊÇ·ñ´æÔÚÕýÕûÊýM£¬Ê¹µÃµ±n£¾Mʱ£¬a1•a4•a7•¡­•a3n-2£¾a16ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öʹ½áÂÛ³ÉÁ¢µÄpµÄÈ¡Öµ·¶Î§ºÍÏàÓ¦µÄMµÄ×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©Èôp=2£¬ÉèÊýÁÐ{cn}¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐc1bn+c2bn-1+c3bn-2+¡­+cnb1=-2n³ÉÁ¢£¬ÎÊÊýÁÐ{cn}ÊDz»ÊǵȱÈÊýÁУ¿ÈôÊÇ£¬ÇëÇó³öÆäͨÏʽ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬ËüµÄÇ°nÏîºÍΪSn£¬µã£¨an£¬Sn£©ÔÚº¯Êýy=
1
8
x2+
1
2
x+
1
2
µÄͼÏóÉÏ£¬ÊýÁÐ{bn}µÄͨÏʽΪbn=
an+1
an
+
an
an+1
£¬ÆäÇ°nÏîºÍΪTn£®
£¨1£©Çóan£»   
£¨2£©ÇóÖ¤£ºTn-2n£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•½­ËÕһģ£©ÉèÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬ÆäÇ°nÏîµÄºÍΪSn£¬¶ÔÓÚÈÎÒâÕýÕûÊým£¬n£¬Sm+n=
2a2m(1+S2n)
-1
ºã³ÉÁ¢£®
£¨1£©Èôa1=1£¬Çóa2£¬a3£¬a4¼°ÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èôa4=a2£¨a1+a2+1£©£¬ÇóÖ¤£ºÊýÁÐ{an}³ÉµÈ±ÈÊýÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸