ÉèÊýÁÐ{an}µÄ¸÷ÏÊÇÕýÊý£¬ÇÒ¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐa13+a23+a33+¡+=Sn2£¬ÆäÖÐSnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£®
£¨I£©ÇóÖ¤£ºan2=2Sn-an£»
£¨II£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨III£©Èôbn=3n+£¨-1£©n-1¦Ë•2an£¨¦ËΪ·ÇÁã³£Êý£¬n¡ÊN*£©£¬ÎÊÊÇ·ñ´æÔÚÕûÊý¦Ë£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐbn+1£¾bn£¬Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º±¾Ì⿼²éµÄÊÇÊýÁÐÓë²»µÈʽµÄ×ÛºÏÌ⣮ÔÚ½â´ðʱ£º
£¨I£©Ê×ÏÈÌÖÂÛn=1ºÍn¡Ý2ʱÁ½ÖÖÇé¿ö£¬½áºÏͨÏîÓëÇ°nÏîºÍÖ®¼äµÄ¹Øϵͨ¹ý×÷²î¡¢±äÐλ¯¼ò¼´¿É»ñµÃÎÊÌâµÄ½â´ð£»
£¨II£©ÀûÓã¨1£©µÄ½áÂÛд³öÏàÁÚµÄÒ»Ïî¶ÔÓ¦µÄ¹Øϵʽ£¬×¢Òâ±£Ö¤n¡Ý2£®ÓÃ×÷²î·¨¿É·ÖÎöÖªÊýÁÐa
nΪµÈ²îÊýÁУ¬½ø¶ø¼´¿É»ñµÃÊýÁеÄͨÏʽ£»
£¨III£©Ê×ÏȼÙÉè´æÔÚ¦ËʹµÃÂú×ãÌâÒ⣬Ȼºó¼ÆË㻯¼òb
n+1-b
n£¬ÔÙ½áºÏºã³ÉÁ¢ÎÊÌâ½øÐÐת»¯£¬½«ÎÊÌâת»¯Îª£º
(-1)n-1•¦Ë£¼()n-1¶ÔÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£®È»ºó·ÖnΪÆæżÊýÌÖÂÛ¼´¿É»ñµÃ¦ËµÄ·¶Î§£¬ÔÙ½áºÏΪÕûÊý¼´¿É»ñµÃÎÊÌâµÄ½â´ð£®
½â´ð£º½â£º
£¨I£©Ö¤Ã÷£ºµ±n=1ʱ£¬a
13=a
12£¬¡ßa
1£¾0£¬¡àa
1=1£®
µ±n¡Ý2ʱ£¬a
13+a
23+¡+a
n3=S
n2£¬
a
13+a
23+¡+a
n-13=S
n-12£¬
Á½Ê½Ïà¼õÖª£ºa
n3=S
n2-S
n-12=a
n£¨2a
1+2a
2+¡+2a
n-1+a
n£©£¬
¡ßa
n£¾0
¡àa
n2=2a
1+2a
2+¡+2a
n-1+2a
n-a
n¡àa
n2=2S
n-a
n×ÛÉÏ¿ÉÖª£º¡àa
n2=2S
n-a
n£¬n¡ÊN*£®
£¨II£©¡ßa
n2=2S
n-a
n¡àµ±n¡Ý2ʱ£¬a
n-12=2S
n-1-a
n-1£¬
¡àa
n2-a
n-12=2£¨S
n-S
n-1£©-a
n+a
n-1£¬
¡à£¨a
n+a
n-1£©£¨a
n-a
n-1-1£©=0
ÓÖ¡ßa
n+a
n-1£¾0£¬¡àa
n-a
n-1-1=0
¡àa
n-a
n-1=1
ËùÒÔÊýÁÐa
nΪÊ×ÏîΪ1£¬¹«²îΪ1µÄµÈ²îÊýÁУ®
¡àÊýÁÐ{a
n}µÄͨÏʽΪ£ºa
n=n£¬n¡ÊN*£®
£¨III£©¼ÙÉè´æÔÚ¦ËʹµÃ¶ÔÈÎÒâµÄn¡ÊN*£¬ÓÐb
n+1£¾b
n£®
¡ßa
n=n£¬n¡ÊN*
¡àb
n=3
n+£¨-1£©
n-1•¦Ë
•2an= 3n +(-1)n-1•¦Ë•2n£¬
¡àb
n+1-b
n=[3
n+1+£¨-1£©
n•¦Ë•2
n+1]-[3
n+£¨-1£©
n-1•¦Ë•2
n]
¡àb
n+1-b
n=2•3
n-3¦Ë£¨-1£©
n-1•2
n£¾0
¡à
(-1)n-1•¦Ë£¼()n-1¶ÔÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£®
µ±n=2k-1£¬k¡ÊN*ʱ£¬
¦Ë£¼()2k-2¶ÔÈÎÒâµÄk¡ÊN*ºã³ÉÁ¢£®
¡à¦Ë£¼1
µ±n=2k£¬k¡ÊN*ʱ£¬
¦Ë£¾-()2k-1¶ÔÈÎÒâµÄk¡ÊN*ºã³ÉÁ¢£®
¡à¦Ë£¾-
¡à-
£¼¦Ë£¼1£¬Ó֡ߦˡÙ0ÇҦˡÊZ
¡à¦Ë=-1£®
¡à´æÔÚÕûÊý¦Ë=-1£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*ÓÐb
n+1£¾b
n³ÉÁ¢£®
µãÆÀ£º±¾Ì⿼²éµÄÊÇÊýÁÐÓë²»µÈʽµÄ×ÛºÏÌ⣮ÔÚ½â´ðµÄ¹ý³Ìµ±Öгä·ÖÌåÏÖÁËÊýÁÐͨÏîÓëÇ°nÏîºÍµÄ֪ʶ¡¢·ÖÀàÌÖÂÛµÄ֪ʶÒÔ¼°ºã³ÉÁ¢ÎÊÌâµÄ½â´ð¹æÂÉ£®ÖµµÃͬѧÃÇÌå»áºÍ·´Ë¼£®