精英家教网 > 高中数学 > 题目详情
9.设曲线y=3x-ln(x+a)在点(0,0)处的切线方程为y=2x,则a=(  )
A.0B.1C.2D.3

分析 根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.

解答 解:曲线y=3x-ln(x+a)y′=3-$\frac{1}{x+a}$,
∴y′(0)=3-$\frac{1}{a}$=2,
∴a=1.
故选:B.

点评 本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=loga(2-ax)在区间[1,3]上是增函数,则实数a的取值范围是0<a<$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(lnx)=x2,则f($\frac{1}{2}$)=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\sqrt{e}$D.e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知直线x-y-2=0与曲线x2-y2=4m的交点P在圆(x-4)2+y2=4的内部,则实数m的取值范围是(  )
A.-1<m<3B.-3<m<-1C.1<m<3D.2<m<3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在直角坐标系内,点A(x,y)实施变换f后,对应点为A1(y,x),给出以下命题:
①圆x2+y2=r2(r≠0)上任意一点实施变换f后,对应点的轨迹仍是圆x2+y2=r2(r≠0);
②若直线y=kx+b上每一点实施变换f后,对应点的轨迹方程仍是y=kx+b,则k=-1;
③椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上每一点实施变换f后,对应点的轨迹仍是离心率不变的椭圆;
④曲线C:y=-x2+2x-1(x>0)上每一点实施变换f后,对应点的轨迹是曲线C1,M是曲线C上的任意一点,N是曲线C1上的任意一点,则|MN|的最小值为$\frac{{3\sqrt{2}}}{4}$.
以上正确命题的序号是①③④(写出全部正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线与圆x2+y2-4x+1=0有公共点,则该双曲线离心率的取值范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(文)点P到定直线x=8的距离与它到定点F(2,1)的距离之比是2:1,则点P的轨迹方程是3x2+4y2-8y-44=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.直角梯形ABCD中,∠A=∠B=90°,AD∥BC,AB=AD=1,BC=2,把直角梯形ABCD绕AB所在直线旋转一周得到一个旋转体,则旋转体的体积为$\frac{7}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若直线x+ay+6=0与直线(a-2)x+3y+2a=0平行,则a=(  )
A.a=-1B.a=3C.a=3或a=-1D.a=3且a=-1

查看答案和解析>>

同步练习册答案