精英家教网 > 高中数学 > 题目详情
1.(文)点P到定直线x=8的距离与它到定点F(2,1)的距离之比是2:1,则点P的轨迹方程是3x2+4y2-8y-44=0.

分析 设出P点坐标,由已知列出等式,化简后得答案.

解答 解:设P坐标(x,y),
|PF|2=(x-2)2+(y-1)2
P到直线x=8的距离d=|x-8|,
∴|PF|:d=1:2,
|PF|2:d2=1:4,
则(x-8)2=4[(x-2)2+(y-1)2],
整理得:3x2+4y2-8y-44=0.
故答案为:3x2+4y2-8y-44=0.

点评 本题考查椭圆方程的求法,考查运算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.不等式|x-2|<3在数轴上表示到2所对应的点的距离小于3的点的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某人一次同时抛掷两枚均匀骰子(它们的六个面分别标有点数1、2、3、4、5、6)求:
(1)两枚骰子点数相同的概率;
(2)两枚骰子点数和为5的倍数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设曲线y=3x-ln(x+a)在点(0,0)处的切线方程为y=2x,则a=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)中,F为右焦点,A为左顶点,点B(0,b)且$\overrightarrow{AB}$•$\overrightarrow{BF}$=0,则此双曲线的离心率为$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{log_2}(-x),\;\;x<0\\{3^{x-1}},\;\;\;\;\;\;\;\;\;\;x≥0\end{array}$,则f(1)=1,f(-6)=log26.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若Sn为等差数列{an}的前n项和,S9=-36,S13=-104,则a6=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知不等式$\frac{x-2}{ax-1}$>0的解集是(-1,2),则二项式(ax-$\frac{1}{ax}$)8的展开式中的常数项为70.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知命题p:m>4;命题q:方程4x2+4(m-2)x+9=0有实根.若p∧q为真,求实数m的取值范围.

查看答案和解析>>

同步练习册答案