精英家教网 > 高中数学 > 题目详情
13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为F1(-$\sqrt{3}$,0),且过点E($\sqrt{3}$,$\frac{1}{2}$),设椭圆C的上下顶点分别为A1,A2,点P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交x轴于点M,N.
(1)求椭圆C的方程;
(2)若直线PA1的斜率与直线PA2的斜率之和为1,求点M的坐标;
(3)求OM•ON的值.

分析 (1)由题意可得c,即a2-b2=3,将已知点代入椭圆方程,解方程,即可得到所求椭圆方程;
(2)A1(0,1),A2(0,-1),P(m,n),即有$\frac{{m}^{2}}{4}$+n2=1,运用直线的斜率公式,解方程可得m,n,再由三点共线的条件:斜率相等,即可得到M的坐标;
(3)设出M,N的坐标,运用三点共线的条件:斜率相等,结合P在椭圆上,满足椭圆方程,化简整理,即可得到所求值.

解答 解:(1)由题意可得c=$\sqrt{3}$,即a2-b2=3,
过点E($\sqrt{3}$,$\frac{1}{2}$),可得$\frac{3}{{a}^{2}}$+$\frac{1}{4{b}^{2}}$=1,
解得a=2,b=1,
即有椭圆方程为$\frac{{x}^{2}}{4}$+y2=1;
(2)A1(0,1),A2(0,-1),P(m,n),
即有$\frac{{m}^{2}}{4}$+n2=1,
${k}_{P{A}_{1}}$=$\frac{n-1}{m}$,${k}_{P{A}_{2}}$=$\frac{n+1}{m}$,
由题意可得$\frac{n-1}{m}$+$\frac{n+1}{m}$=1,即为m=2n,
解方程可得m=$\sqrt{2}$,n=$\frac{\sqrt{2}}{2}$或m=-$\sqrt{2}$,n=-$\frac{\sqrt{2}}{2}$,
设M(t,0),由P,A1,M三点共线,
可得$\frac{n-1}{m}$=$\frac{-1}{t}$,解得t=$\frac{m}{1-n}$,
即有t=2±2$\sqrt{2}$,
即有M(,2-2$\sqrt{2}$,0)或(2+2$\sqrt{2}$,0);
(3)由(2)可得A1(0,1),A2(0,-1),P(m,n),
即有$\frac{{m}^{2}}{4}$+n2=1,即为1-n2=$\frac{{m}^{2}}{4}$,
设M(t,0),由P,A1,M三点共线,可得
$\frac{n-1}{m}$=$\frac{-1}{t}$,解得t=$\frac{m}{1-n}$;
设N(s,0),由P,A2,N三点共线,可得
$\frac{n+1}{m}$=$\frac{1}{s}$,解得s=$\frac{m}{1+n}$,
即有OM•ON=|$\frac{{m}^{2}}{1-{n}^{2}}$|=4.

点评 本题考查椭圆的方程的求法,注意运用点满足椭圆方程,考查直线的斜率的公式的运用,同时考查三点共线的条件:斜率相等,以及化简整理的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.曲线y=sin(2x+$\frac{π}{6}$)的一条对称轴是(  )
A.y=-$\frac{5π}{12}$B.x=$\frac{5π}{12}$C.x=-$\frac{7π}{6}$D.x=$\frac{7π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列参数方程(t为参数)与普通方程x2-y=0表示同一曲线的方程是(  )
A.$\left\{\begin{array}{l}x=tant\\ y=\frac{1+cos2t}{1-cos2t}\end{array}$B.$\left\{\begin{array}{l}x=tant\\ y=\frac{1-cos2t}{1+cos2t}\end{array}$
C.$\left\{\begin{array}{l}{x=|t|}\\{y={t}^{2}}\end{array}\right.$D.$\left\{\begin{array}{l}{x=cost}\\{y=co{s}_{\;}^{2}t}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C:ρcos2θ=2sinθ,过点P(0,1)的直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),直线l与轨迹C交于M,N两点.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数f(x)满足x2f′(x)+2xf(x)=$\frac{{e}^{x}}{x}$(e为自然对数的底数),f(2)=$\frac{{e}^{2}}{8}$,判断f(x)在(0,+∞)上的极值情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx+ax,g(x)=f(x)-ax+$\frac{a}{x-1}$.
(1)若函数y=f(x)在x=1处取得极值,求实数a的值;
(2)若函数y=g(x)在(0,$\frac{1}{e}$)内有极值,求实数a的取值范围;
(3)在(2)的条件下,对任意t∈(1,+∞),s∈(0,1).求证:g(t)-g(s)>e-$\frac{1}{e}$+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x-$\frac{1}{x}$-alnx.
(1)若f′(2+$\sqrt{3}$)=0,求函数f(x)的极大值点;
(2)若当x≥1时,f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.抛物线y2=2x上两点A,B,已知AB的中点在直线x=2上,F为抛物线焦点,则|AF|+|BF|=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到y轴距离之和最小值是$\sqrt{17}$-2.

查看答案和解析>>

同步练习册答案