精英家教网 > 高中数学 > 题目详情

设点分别为椭圆的左,右两焦点,直线为右准线.若在椭圆上存在点,使,点到直线的距离成等比数列,则此椭圆离心率的取值范围是             .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的对称中心为坐标原点O,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2
5
,点(
5
4
3
)
在该椭圆上.
(1)求椭圆C的方程;
(2)设椭圆C上的一点p在第一象限,且满足PF1⊥PF2,⊙O的方程为x2+y2=4.求点p坐标,并判断直线pF2与⊙O的位置关系;
(3)设点A为椭圆的左顶点,是否存在不同于点A的定点B,对于⊙O上任意一点M,都有
MB
MA
为常数,若存在,求所有满足条件的点B的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
上两点P、Q在x轴上的射影分别为椭圆的左、右焦点,且P、Q两点的连线的斜率为
2
2

(1)求椭圆的离心率e的大小;
(2)若以PQ为直径的圆与直线x+y+6=0相切,求椭圆C的标准方程;
(3)设点M(0,3)在椭圆内部,若椭圆C上的点到点M的最远距离不大于5
2
,求椭圆C的短轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年苏教版高中数学选修2-1 2.2椭圆练习卷(解析版) 题型:解答题

分别为椭圆的左、右两个焦点.

(1)若椭圆上的点两点的距离之和等于4,写出椭圆的方程和焦点坐标;

(2)设点是(1)中所得椭圆上的动点,求线段的中点的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012年福建省福州市高二上学期期末考试理科数学 题型:解答题

(本小题10分)

分别为椭圆的左、右两个焦点.(1)若椭圆上的点两点的距离之和等于4,求椭圆的方程和焦点坐标;(2)设点P是(1)中所得椭圆上的动点,

 

查看答案和解析>>

同步练习册答案