精英家教网 > 高中数学 > 题目详情
已知a,b,c都是正数,且a,b,c成等比数列,求证:a2+b2+c2>(a-b+c)2
分析:左边减去右边等于2(ab+bc-ac ),用等比数列的定义以及基本不等式可得 a+c>b,进而推出2(ab+bc-ac )>0,
从而证得不等式成立.
解答:证明:∵a2+b2+c2 -(a-b+c)2=2(ab+bc-ac ).
∵a,b,c都是正数,且a,b,c成等比数列,∴b2 =ac≤(
a+c
2
)
2

开方可得
a+c
2
b2
,故 a+c≥2b>b.
∴2(ab+bc-ac )=2(ab+bc-b2 )=2b(a+c-b)>0,
∴a2+b2+c2 -(a-b+c)2>0,∴a2+b2+c2>(a-b+c)2
点评:本题主要考查基本不等式的应用,等比数列的定义和性质,用比较法证明不等式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•许昌三模)已知a、b、c都是正整数且abc=8,求证:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c都是正实数,求证(1)
a2
b
≥2a-b,(2)
a2
b
+
b2
c
+
c2
a
≥a+b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c都是正实数,且满足log4(16a+b)=log2
ab
,则使4a+b≥c恒成立的c的取值范围是
(0,36]
(0,36]

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
(Ⅰ)已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(Ⅱ)已知a,b,c都是正实数,求证:a3+b3+c3
13
(a2+b2+c2)(a+b+c)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省郑州市新密二高高三(上)周练数学试卷3(理科)(解析版) 题型:解答题

已知a、b、c都是正整数且abc=8,求证:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

同步练习册答案