精英家教网 > 高中数学 > 题目详情
(2012•合肥一模)与椭圆
x2
12
+
y2
16
=1
共焦点,离心率互为倒数的双曲线方程是(  )
分析:确定椭圆的焦点坐标与离心率,可得双曲线焦点坐标与离心率,从而可求双曲线的方程.
解答:解:椭圆
x2
12
+
y2
16
=1
中a2=16,b2=12,c2=4
∴椭圆的焦点坐标为(0,2),(0,-2),离心率e=
c
a
=
1
2

∴双曲线的焦点坐标为(0,2),(0,-2),离心率e′=2
∴c′=2,a′=1,
∴b′2=3
∴与椭圆
x2
12
+
y2
16
=1
共焦点,离心率互为倒数的双曲线方程是y2-
x2
3
=1

故选A.
点评:本题考查椭圆与双曲线的几何性质,考查椭圆与双曲线的标准方程,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•合肥一模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,抛物线:x2=a2y.直线l:x-y-1=0过椭圆的右焦点F且与抛物线相切.
(1)求椭圆C的方程;
(2)设A,B为抛物线上两个不同的点,l1,l2分别与抛物线相切于A,B,l1,l2相交于C点,弦AB的中点为D,求证:直线CD与x轴垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•合肥一模)已知数列{an}满足a1=1,an+1an=2n(n∈N*),则a10=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•合肥一模)若函数f(x)为奇函数,当x≥0时,f(x)=x2+x,则f(-2)的值为
-6
-6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•合肥一模)函数f(x)=lnx-ax(a>0).
(1)当a=2时,求f(x)的单调区间与极值;
(2)对?x∈(0,+∞),f(x)<0恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•合肥一模)已知函数f(x)的导函数的图象如图所示,若△ABC为锐角三角形,则一定成立的是(  )

查看答案和解析>>

同步练习册答案