£¨2012•ÈýÃ÷Ä£Ä⣩£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
Éè¾ØÕóM=
1a
b1
£®
£¨I£©Èôa=2£¬b=3£¬Çó¾ØÕóMµÄÄæ¾ØÕóM-1£»
£¨II£©ÈôÇúÏßC£ºx2+4xy+2y2=1ÔÚ¾ØÕóMµÄ×÷ÓÃϱ任³ÉÇúÏßC'£ºx2-2y2=1£¬Çóa+bµÄÖµ£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖª¼«×ø±êϵµÄ¼«µãÓëÖ±½Ç×ø±êϵµÄÔ­µãÖغϣ¬¼«ÖáÓëÖ±½Ç×ø±êϵÖÐxÖáµÄÕý°ëÖáÖغϣ®Ô²CµÄ²ÎÊý·½³ÌΪ
x=1+2cos¦Á
y=-1+2sin¦Á
£¨¦ÁΪ²ÎÊý£©£¬µãQ¼«×ø±êΪ(2£¬
7¦Ð
4
)
£®
£¨¢ñ£©»¯Ô²CµÄ²ÎÊý·½³ÌΪ¼«×ø±ê·½³Ì£»
£¨¢ò£©ÈôµãPÊÇÔ²CÉϵÄÈÎÒâÒ»µã£¬ÇóP¡¢QÁ½µã¾àÀëµÄ×îСֵ£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
É躯Êýf£¨x£©=|x+1|+|x-2|£®
£¨¢ñ£©Çóy=f£¨x£©µÄ×îСֵ£»
£¨¢ò£©Èô¹ØÓÚxµÄ²»µÈʽf£¨x£©¡Ý4µÄ½â¼¯ÎªA£¬Ç󼯺ÏA£®
·ÖÎö£º£¨1£©£¨I£©Éè¾ØÕóMµÄÄæ¾ØÕóM-1=
x1y1
x2y2
£¬ÔòMM-1=
10
01
£¬½¨Á¢·½³Ì×飬¼´¿ÉÇóµÃËùÇóµÄÄæ¾ØÕó£»
£¨II£©ÉèÇúÏßCÉÏÈÎÒâÒ»µãP£¨x£¬y£©£¬ËüÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵõ½µãP'£¨x'£¬y'£©£¬¿ÉµÃ
x+ay=x¡ä
bx+y=y¡ä
£¬ÀûÓõãP'£¨x'£¬y'£©ÔÚÇúÏßC'ÉÏ£¬¿ÉµÃÇúÏßCµÄ·½³Ì£¬¸ù¾ÝÒÑÖªÇúÏßCµÄ·½³Ì£¬±È½ÏϵÊý¿ÉµÃ½áÂÛ£»
£¨2£©£¨I£©ÏÈÇóÔ²CµÄÆÕͨ·½³Ì£¬Õ¹¿ª£¬ÔÙ»¯Îª¼«×ø±ê·½³Ì£»
£¨II£©µãQµÄÖ±½Ç×ø±êΪ£¨2£¬-2£©£¬ÇÒµãQÔÚÔ²CÄÚ£¬Çó³ö|QC|=
2
£¬¿ÉµÃP£¬QÁ½µã¾àÀëµÄ×îСֵ£»
£¨3£©£¨I£©ÀûÓþø¶ÔÖµµÄÔËÓã¬Ð´³ö·Ö¶Îº¯Êý£¬´Ó¶ø¿ÉÇóy=f£¨x£©µÄ×îСֵ£»
£¨II£©ÀûÓ÷ֶκ¯Êý£¬¸ù¾Ýf£¨x£©¡Ý4£¬Áгö²»µÈʽ£¬¼´¿ÉÇóµÃ²»µÈʽf£¨x£©¡Ý4µÄ½â¼¯£®
½â´ð£º£¨1£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
½â£º£¨I£©Éè¾ØÕóMµÄÄæ¾ØÕóM-1=
x1y1
x2y2
£¬ÔòMM-1=
10
01
£®ÓÖM=
12
31
£¬
ËùÒÔ
12
31
x1y1
x2y2
=
10
01
£¬ËùÒÔx1+2x2=1£¬3x1+x2=0£¬y1+2y2=0£¬3y1+y2=1£¬
¼´x1=-
1
5
£¬y1=
2
5
£¬x2=
3
5
£¬y2=-
1
5
£¬
¹ÊËùÇóµÄÄæ¾ØÕóM-1=
-
1
5
2
5
3
5
-
1
5
£®¡­£¨4·Ö£©
£¨II£©ÉèÇúÏßCÉÏÈÎÒâÒ»µãP£¨x£¬y£©£¬ËüÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵõ½µãP'£¨x'£¬y'£©£¬Ôò
1a
b1
x
y
=
x¡ä
y¡ä
£¬¼´
x+ay=x¡ä
bx+y=y¡ä
£¬¡­£¨5·Ö£©
ÓÖµãP'£¨x'£¬y'£©ÔÚÇúÏßC'ÉÏ£¬ËùÒÔx'2-2y'2=1£¬Ôò£¨x+ay£©2-2£¨bx+y£©2=1£¬
¼´£¨1-2b2£©x2+£¨2a-4b£©xy+£¨a2-2£©y2=1ΪÇúÏßCµÄ·½³Ì£¬
ÓÖÒÑÖªÇúÏßCµÄ·½³ÌΪx2+4xy+2y2=1£¬
±È½ÏϵÊý¿ÉµÃ
1-2b2=1
2a-4b=4
a2-2=2
£¬½âµÃb=0£¬a=2£¬¡àa+b=2£®¡­£¨7·Ö£©
£¨2£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
½â£º£¨I£©Ô²CÆÕͨ·½³ÌΪ£¨x-1£©2+£¨y+1£©2=4£¬
Õ¹¿ªµÃx2+y2-2x+2y-2=0£¬¡­£¨2·Ö£©
»¯Îª¼«×ø±ê·½³ÌΪ¦Ñ2-2¦Ñcos¦È+2¦Ñsin¦È-2=0£®      ¡­£¨4·Ö£©
£¨II£©µãQµÄÖ±½Ç×ø±êΪ£¨2£¬-2£©£¬ÇÒµãQÔÚÔ²CÄÚ£¬
ÒòΪ|QC|=
2
£¬ËùÒÔP£¬QÁ½µã¾àÀëµÄ×îСֵΪ|PC|=2-
2
£®    ¡­£¨7·Ö£©
£¨3£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
½â£º£¨I£©f(x)=
-2x+1£¬(x¡Ü-1)
3£¬(-1£¼x£¼2)
2x-1£¬(x¡Ý2)
ËùÒÔy=f£¨x£©µÄ×îСֵΪ3£®¡­£¨4·Ö£©
£¨II£© ÓÉ£¨I£©¿ÉÖª£¬µ±x¡Ü-1ʱ£¬f£¨x£©¡Ý4£¬¼´-2x+1¡Ý4£¬´Ëʱx¡Ü-
3
2
£»
µ±x¡Ý2ʱ£¬f£¨x£©¡Ý4£¬¼´2x-1¡Ý4£¬´Ëʱx¡Ý
5
2
£®
Òò´Ë²»µÈʽf£¨x£©¡Ý4µÄ½â¼¯ÎªAΪ{|x¡Ü-
3
2
»òx¡Ý
5
2
}£®      ¡­£¨7·Ö£©
µãÆÀ£º±¾Ì⿼²éÑ¡ÐÞ֪ʶ£¬¿¼²é¾ØÕóÓë±ä»»£¬¿¼²é×ø±êϵÓë²ÎÊý·½³Ì£¬¿¼²é²»µÈʽѡ½²£¬×ÛºÏÐÔÇ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÈýÃ÷Ä£Ä⣩ijʳƷ³§¶ÔÉú²úµÄijÖÖʳƷ°´ÐÐÒµ±ê×¼·Ö³ÉÎå¸ö²»Í¬µÈ¼¶£¬µÈ¼¶ÏµÊýXÒÀ´ÎΪA£¬B£¬C£¬D£¬E£®ÏÖ´Ó¸ÃÖÖʳƷÖÐËæ»ú³éÈ¡20¼þÑùÆ·½øÐмìÑ飬¶ÔÆäµÈ¼¶ÏµÊý½øÐÐͳ¼Æ·ÖÎö£¬µÃµ½ÆµÂÊ·Ö²¼±íÈçÏ£º
X A B C D E
ƵÂÊ a 0.2 0.45 b c
£¨¢ñ£©ÔÚËù³éÈ¡µÄ20¼þÑùÆ·ÖУ¬µÈ¼¶ÏµÊýΪDµÄÇ¡ÓÐ3¼þ£¬µÈ¼¶ÏµÊýΪEµÄÇ¡ÓÐ2¼þ£¬Çóa£¬b£¬cµÄÖµ£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬½«µÈ¼¶ÏµÊýΪDµÄ3¼þÑùÆ·¼ÇΪx1£¬x2£¬x3£¬µÈ¼¶ÏµÊýΪEµÄ2¼þÑùÆ·¼ÇΪy1£¬y2£¬ÏÖ´Óx1£¬x2£¬x3£¬y1£¬y2Õâ5¼þÑùÆ·ÖÐÒ»´ÎÐÔÈÎÈ¡Á½¼þ£¨¼Ù¶¨Ã¿¼þÑùÆ·±»È¡³öµÄ¿ÉÄÜÐÔÏàͬ£©£¬ÊÔд³öËùÓпÉÄܵĽá¹û£¬²¢ÇóÈ¡³öµÄÁ½¼þÑùÆ·ÊÇͬһµÈ¼¶µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÈýÃ÷Ä£Ä⣩ÒÑÖª¼¯ºÏM={x|-1¡Üx¡Ü1}£¬N={0£¬1£¬2}£¬ÔòM¡ÉNΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÈýÃ÷Ä£Ä⣩ÒÑÖªÕýʵÊýa£¬bÂú×ã²»µÈʽab+1£¼a+b£¬Ôòº¯Êýf£¨x£©=loga£¨x+b£©µÄͼÏó¿ÉÄÜΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÈýÃ÷Ä£Ä⣩ÒÑÖªº¯Êýf£¨x£©=x£¨x-a£©2£¬aÊÇ´óÓÚÁãµÄ³£Êý£®
£¨¢ñ£©µ±a=1ʱ£¬Çóf£¨x£©µÄ¼«Öµ£»
£¨¢ò£©Èôº¯Êýf£¨x£©ÔÚÇø¼ä[1£¬2]ÉÏΪµ¥µ÷µÝÔö£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©Ö¤Ã÷£ºÇúÏßy=f£¨x£©ÉÏ´æÔÚÒ»µãP£¬Ê¹µÃÇúÏßy=f£¨x£©ÉÏ×ÜÓÐÁ½µãM£¬N£¬ÇÒ
MP
=
PN
³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÈýÃ÷Ä£Ä⣩Èôa¡Ê[0£¬3]£¬Ôòº¯Êýf£¨x£©=x2-2ax+aÓÐÁãµãµÄ¸ÅÂÊΪ
2
3
2
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸