【题目】在平面直角坐标系
中,抛物线方程为
,其顶点到焦点的距离为
.
(1)求抛物线的方程;
(2)若点
,设直线
与抛物线交于
、
两点,且直线
、
的斜率之和为
,试证明:对于任意非零实数
,直线
必过定点.
科目:高中数学 来源: 题型:
【题目】设f(x)是定义域为R的周期函数,最小正周期为2,且
f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.
(1)判断f(x)的奇偶性;
(2)试求出函数f(x)在区间[-1,2]上的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某市有一条东西走向的公路l,现欲经过公路l上的O处铺设一条南北走向的公路m,在施工过程中发现O处的正北方向1百米的A处有一汉代古迹,为了保护古迹,该市委决定以A为圆心,1百米为半径设立一个圆形保护区,为了连通公路l,m,欲再新建一条公路PQ,点P,Q分别在公路l,m上(点P,Q分别在点O的正东、正北方向),且要求PQ与圆A相切.
![]()
(1)当点P距O处2百米时,求OQ的长;
(2)当公路PQ的长最短时,求OQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
)的左、右焦点分别为
,
,离心率
,椭圆的短轴长为2.
(1)求椭圆的标准方程;
(2)已知直线
,
过右焦点
,且它们的斜率乘积为
,设
,
分别与椭圆交于点A,B和C,D.
①求
的值;
②设
的中点M,
的中点为N,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
为曲线
上的动点,点
在射线
上,且满足
.
(Ⅰ)求点
的轨迹
的直角坐标方程;
(Ⅱ)设
与
轴交于点
,过点
且倾斜角为
的直线
与
相交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,倾斜角为
的直线
的参数方程为
(
为参数).在以坐标原点为极点,
轴正半轴为极轴的极坐标系中,曲线
的极坐标方程为
.
(1)求直线
的普通方程与曲线
的直角坐标方程;
(2)若直线
与曲线
交于
,
两点,且
,求直线
的倾斜角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com