【题目】在等比数列{an}中,a1=2,a3,a2+a4,a5成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1++…+=an(n∈N*),{bn}的前n项和为Sn,求使Sn﹣nan+6≥0成立的正整数n的最大值.
【答案】(1)(2)3
【解析】
试题分析:(1)将已知条件转化为等差数列首相和公差表示可求得公差的值,从而确定通项公式;(2)由数列{bn}满足b1++…+=an ,b1++…++=an+1,可求得{bn}的通项公式,进而求得前n项和Sn,代入解不等式Sn﹣nan+6≥0可得n值
试题解析:(1)∵等比数列{an}中,a1=2,a3,a2+a4,a5成等差数列.
∴2(a2+a4)=a3+a5,
即2(a2+a4)=q(a2+a4),
∴q=2,
则an=a1qn﹣1=2×2n﹣1=2n,
即;
(2)∵数列{bn}满足b1+,
∴b1++…++=an+1,
两式相减得=an+1﹣an=2n+1﹣2n=2n,
则bn+1=(n+1)2n,即bn=n2n﹣1,n≥2,
当n=1时,b1=a1=2,不满足bn=n2n﹣1,n≥2.
即bn=.
当n=1时,不等式等价为S1﹣a1+6=6≥0成立,
当n≥2时,
Sn=2+221+322+423+…+n2n﹣1,①
则2Sn=4+222+323+424+…+n2n,②
②﹣①,得Sn=2+221﹣22﹣23﹣24﹣…﹣2n﹣1+n2n=6﹣+n2n=6+n2n=6+4﹣2n+1+n2
则当n≥2时,不等式Sn﹣nan+6≥0等价为10+(n﹣2)2n﹣n2n+6≥0,
即16﹣22n≥0,则2n≤8,得n≤3,
则n的最大值是3.
科目:高中数学 来源: 题型:
【题目】下列关于算法的说法正确的有( )
①求解某一类问题的算法是唯一的;
②算法必须在有限步操作之后停止;
③算法的每一步操作必须是明确的,不能有歧义;
④算法执行后一定产生明确的结果.
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在空间直角坐标系中,点(-2,1,4)关于x轴的对称点的坐标为( )
A. (-2,1,-4) B. (-2,-1,-4)
C. (2,1,-4) D. (2,-1,4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在区间上的函数,若存在闭区间和常数,使得对任意,都有,且对任意,当时,恒成立,则称函数为区间上的“平底型”函数.
(1)判断函数和是否为上的“平底型”函数?
(2)若函数是区间上的“平底型”函数,求和的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在甲、乙等7个选手参加的一次演讲比赛中,采用抽签的方式随机确定每个选手的演出顺序(序号为1,2,……7),求:
(1)甲、乙两个选手的演出序号至少有一个为奇数的概率;
(2)甲、乙两选手之间的演讲选手个数的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某化工厂引进一条先进生产线生产某种化工产品, 其生产的总成本(万元)与年产量 (吨)之间的函数关系式可以近似地表示为,已知此生产线年产量最大为吨.
(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;
(2)若毎吨产品平均出厂价为万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|-3≤x<3},B={x|2<x≤5},则A∪B=( )
A.{x|2<x<3}
B.{x|-3≤x≤5}
C.{x|-3<x<5}
D.{x|-3<x≤5}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数和分别是上的奇函数和偶函数,且,其中为自然对数的底数.
(Ⅰ)求函数的解析式;
(Ⅱ)当时,分别求出曲线和切线斜率的最小值;
(Ⅲ)设,证明:当时,曲线在曲线和之间,且相互之间没有公共点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】全国人民代表大会在北京召开,为了搞好对外宣传工作,会务组选聘了16名男记者和14名女记者担任对外翻译工作.调查发现,男、女记者中分别有10人和6人会俄语.
(1)根据以上数据完成以下列联表:
会俄语 | 不会俄语 | 总计 | |
男 | |||
女 | |||
总计 |
(2)能否在犯错的概率不超过0.10的前提下认为性别与会俄语有关?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com