精英家教网 > 高中数学 > 题目详情
精英家教网在四棱锥P-ABCD中,PA⊥底面ABCD,底面四边形ABCD是矩形,且AD=3AB,点E是底面的边BC上的动点,设
BE
BC
=λ(0<λ<1)
,则满足PE⊥DE的λ值有(  )
A、0个B、1个C、2个D、3个
分析:连接AE,根据三垂线定理可得AE⊥DE,所以E在以AD为直径的圆上,根据AD=3AB,可得E在以AD为直径的圆与BC有两个交点,故可得结论.
解答:解:连接AE,则
∵PA⊥底面ABCD,PE⊥DE,
∴根据三垂线定理可得AE⊥DE,
∴E在以AD为直径的圆上,
∵AD=3AB,
∴E在以AD为直径的圆与BC有两个交点,
∴满足PE⊥DE的λ值有2个.
故选C.
点评:本题考查三垂线定理,考查直线与圆的位置关系,判定E在以AD为直径的圆上是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90,PA⊥底面ABCD,且PA=AD=AB=2BC=2,M,N分别为PC、PB的中点.
(1)求证:PB⊥DM;
(2)求BD与平面ADMN所成角的大小;
(3)求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4.AB=2,AN⊥PC于点N,M是PD中点.
(1)用空间向量证明:AM⊥MC,平面ABM⊥平面PCD.
(2)求直线CD与平面ACM所成的角的正弦值.
(3)求点N到平面ACM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,O为底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中点
(1)求证:直线MO∥平面PAB;
(2)求证:平面PCD⊥平面ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)求证:AD⊥平面PAB;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)如图,在四棱锥P-ABCD中,底面ABCD为正方形,且PD⊥平面ABCD,PD=AB=1,EF分别是PB、AD的中点,
(I)证明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大小.

查看答案和解析>>

同步练习册答案