精英家教网 > 高中数学 > 题目详情

已知四棱锥P-ABCD的底面ABCD是等腰梯形,ABCD,且ACBDACBD交于OPO⊥底面ABCDPO=2,AB=2CD=2EF分别是ABAP的中点.
 
(1)求证:ACEF
(2)求二面角F-OE-A的余弦值.

(1)见解析(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABCA1B1C1中,DE分别是ABBB1的中点,AA1ACCBAB.
 
(1)证明:BC1∥平面A1CD
(2)求二面角DA1CE的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在矩形ABCD中,AB=2AD=2,OCD的中点,沿AO将△AOD折起,使DB.

(1)求证:平面AOD⊥平面ABCO
(2)求直线BC与平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是直角梯形,,且,顶点在底面内的射影恰好落在的中点上.

(1)求证:
(2)若,求直线所成角的 余弦值;
(3)若平面与平面所成的二面角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等腰梯形ABCD中,ADBCADBC,∠ABC=60°,NBC的中点,将梯形ABCDAB旋转90°,得到梯形ABCD′(如图).

(1)求证:AC⊥平面ABC′;
(2)求证:CN∥平面ADD′;
(3)求二面角A-CN-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.

(Ⅰ)求异面直线EF与BC所成角的大小;
(Ⅱ)若二面角A-BF-D的平面角的余弦值为,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为2的正方形中,点的中点,点的中点,将△、△分别沿折起,使两点重合于点,连接

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题12分)如图,在棱长为ɑ的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求直线C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG;
(3)求证:平面AA1C⊥面EFG .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正四棱锥P-ABCD的所有棱长都是2,底面正方形两条对角线相交于O点,M是侧棱PC的中点.

(1)求此正四棱锥的体积.
(2)求直线BM与侧面PAB所成角θ的正弦值.

查看答案和解析>>

同步练习册答案