已知四棱锥P-ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2,E,F分别是AB,AP的中点.
(1)求证:AC⊥EF;
(2)求二面角F-OE-A的余弦值.
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.
(1)证明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在矩形ABCD中,AB=2AD=2,O为CD的中点,沿AO将△AOD折起,使DB=.
(1)求证:平面AOD⊥平面ABCO;
(2)求直线BC与平面ABD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥的底面是直角梯形,,,且,顶点在底面内的射影恰好落在的中点上.
(1)求证:;
(2)若,求直线与所成角的 余弦值;
(3)若平面与平面所成的二面角为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在等腰梯形ABCD中,AD∥BC,AD=BC,∠ABC=60°,N是BC的中点,将梯形ABCD绕AB旋转90°,得到梯形ABC′D′(如图).
(1)求证:AC⊥平面ABC′;
(2)求证:C′N∥平面ADD′;
(3)求二面角A-C′N-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.
(Ⅰ)求异面直线EF与BC所成角的大小;
(Ⅱ)若二面角A-BF-D的平面角的余弦值为,求AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本大题12分)如图,在棱长为ɑ的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求直线C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG;
(3)求证:平面AA1C⊥面EFG .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知正四棱锥P-ABCD的所有棱长都是2,底面正方形两条对角线相交于O点,M是侧棱PC的中点.
(1)求此正四棱锥的体积.
(2)求直线BM与侧面PAB所成角θ的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com