如图,四棱锥的底面是直角梯形,,,且,顶点在底面内的射影恰好落在的中点上.
(1)求证:;
(2)若,求直线与所成角的 余弦值;
(3)若平面与平面所成的二面角为,求的值.
(1)详见解析;(2);(3).
解析试题分析:(1)以O为坐标原点,AB所在直线为x轴,OP所在直线为z轴,建立空间直角坐标系o-xyz,求出向量,的坐标,代入数量积公式,验证其数量积与0的关系,即可得到结论.
(2)由PO=BC,得h=a,求出向量,的坐标,代入向量夹角公式,即可求出直线PD与AB所成的角;
(3)求出平面APB与平面PCD的法向量,根据平面APB与平面PCD所成的角为60°,构造关于h的方程,解方程即可得到的值.
试题解析:因为中点为点在平面内的射影,所以平面.过作的平行线交与点,则.
建立如图所示的空间直角坐标系 2分
(1)设,,则
,.
∴.
∵, ∴ . 6分
(2)由,得,于是
∵, 8分
∴,
∴直线PD与AB所成的角的余弦值为. 10分
(3)设平面PAB的法向量为,可得,
设平面PCD的法向量为,
由题意得,
∵∴令,得到, 12分
∴, 14分
∵平面与平面所成的二面角为,∴,解得,
即. 16分
考点:(1)直线与平面所成的角;(2)异面直线及其所成的角.
科目:高中数学 来源: 题型:解答题
如图,四边形ABEF和四边形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,FA⊥CD.
(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;
(2)求二面角FCDA的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.
(1)证明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥P-ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2,E,F分别是AB,AP的中点.
(1)求证:AC⊥EF;
(2)求二面角F-OE-A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥S﹣ABCD的底面为正方形,SD⊥平面ABCD,SD=AD=2,请建立空间直角坐标系解决下列问题.
(1)求证:;(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在如图所示的空间直角坐标系O-xyz中,原点O是BC的中点,A点坐标为,D点在平面yoz上,BC=2,∠BDC=90°,∠DCB=30°.
(Ⅰ)求D点坐标;
(Ⅱ)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
三棱柱ABC-A1B1C1在如图所示的空间直角坐标系中,已知AB=2,AC=4,A1A=3.D是BC的中点.
(1)求直线DB1与平面A1C1D所成角的正弦值;
(2)求二面角B1-A1D-C1的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com