精英家教网 > 高中数学 > 题目详情

如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.

(Ⅰ)证明:平面;
(Ⅱ)若,,求二面角的正切值.

(1)对于线面垂直的证明,一般要通过线线垂直来分析证明,关键是对于
(2)3

解析试题分析:解析:(Ⅰ)因为平面,平面,所以.又因为平面,平面,所以.而,平面,平面,所以平面.                                 
5分 
(Ⅱ)由(Ⅰ)可知平面,而平面,所以,而为矩形,所以为正方形,于是.
法1:以点为原点,轴、轴、轴,建立空间直角坐标系.则,于是,.设平面的一个法向量为,则,从而,令,得.而平面的一个法向量为.所以二面角的余弦值为,于是二面角的正切值为3.                                      13分
法2:设交于点,连接.因为平面,平面,平面,所以,,于是就是二面角的平面角.又因为平面,平面,所以是直角三角形.由

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是直角梯形,,且,顶点在底面内的射影恰好落在的中点上.

(1)求证:
(2)若,求直线所成角的 余弦值;
(3)若平面与平面所成的二面角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面平面是等腰直角三角形,,四边形是直角梯形,,点分别为的中点.

(1)求证:平面
(2)求直线和平面所成角的正弦值;
(3)能否在上找到一点,使得平面?若能,请指出点的位置,并加以证明;若不能,请说明理由 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在边长为的正方体中,分别是的中点,试用向量的方法:

求证:平面
与平面所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。

(I)求棱PB的长;
(II)求二面角P—AB—C的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题12分)如图,在棱长为ɑ的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求直线C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG;
(3)求证:平面AA1C⊥面EFG .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设向量并确定的关系,使轴垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
ABCD为矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P为AB的中点.

(1)求证:平面PCF⊥平面PDE;
(2)求证:AE∥平面BCF.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

直线的倾斜角为(   )

A. B. C. D. 

查看答案和解析>>

同步练习册答案