精英家教网 > 高中数学 > 题目详情
9.已知函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的最小值为-4,其图象最高点与最低点横坐标之差是8,又知图象经过点(4,2$\sqrt{2}$).
(1)求函数解析式;
(2)求此函数的最大值和最小正周期.

分析 (1)由函数的最值求出A,由周期求出ω,根据特试点的坐标求出φ,可得函数的解析式.
(2)根据正弦函数的图象特征求出函数的最大值,利用三角函数周期公式可求最小正周期.

解答 解:(1)由题意知:A=4,半周期$\frac{T}{2}$=8=$\frac{π}{ω}$,求得ω=$\frac{π}{8}$,故y=4sin($\frac{π}{8}$x+φ). 
再把(4,2$\sqrt{2}$)代入,可得4sin($\frac{π}{8}$×4+φ)=2$\sqrt{2}$,
∴cosφ=$\frac{\sqrt{2}}{2}$,由,0<φ<π,可得:φ=$\frac{π}{4}$,
故所求函数解析式为y=4sin($\frac{π}{8}$x+$\frac{π}{4}$). 
(2)令$\frac{π}{8}$x+$\frac{π}{4}$=2kπ+$\frac{π}{2}$,k∈z,求得x=16k+2,故当x=16k+2 时,函数取得最大值为4.
此函数的最小正周期T=$\frac{2π}{\frac{π}{8}}$=16.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图所示,在平面直角坐标系中,ABCDEF为正六边形,边长为1,BE在x轴上,BE的中点是坐标原点O.
(1)写出与向量$\overrightarrow{OF}$相等的一个向量,其起点与终点是A、B、O、E、F中的两个点.
(2)设向量$\overrightarrow{a}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$,求向量$\overrightarrow{a}$的坐标,并在图中画出向量$\overrightarrow{a}$的负向量,要求所画向量的起点与终点是A、B、O、E、F中的两个点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sinθ、cosθ是关于x的方程x2-ax+a=0的两根.
(1)求实数a的值;
(2)求sin3θ+cos3θ的值;
(3)求tanθ+cotθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若点(3,$\sqrt{3}$)到直线x+my-4=0的距离等于1,则m的值为0或$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知tanx=-3.62,求0°~360°范围内的角x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知(1+2x)4(1-x23=a0+a1x+a2x2+…+a10x10
(Ⅰ)求a1+a2+…+a10的值;
(Ⅱ)求a2的值
(Ⅲ)将a1,a2,a3,a4,a5,a6这六个不同的符号,放入编号为1,2,3,4,5,6的6个盒子中,每个盒内放一个数,若a1,a2,a3,a4,a5,a6这六个符号中至多有三个符号的下标与盒子编号相同,求不同的投放方法的种数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.化简:$\frac{\frac{1}{2}sin2}{cos\frac{1}{2}+cos\frac{3}{2}}$=sin$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在(1+x)5的展开式中,x2的系数为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥S-ABCD的底面是正方形,SA⊥底面ABCD,E是SC上一点.
(1)求证:BD⊥平面SAC;
(2)设SA=4,AB=2,求点A到平面SBD的距离.

查看答案和解析>>

同步练习册答案