精英家教网 > 高中数学 > 题目详情

【题目】圆周上有1994个点将它们染成若干种不同的颜色且每种颜色的点数各不相同.今在每种颜色的点集中各取一个点组成顶点颜色各不相同的圆内接多边形为了要使这样的多边形个数最多应将1994个点染成多少种不同的颜色且每种颜色的点集各含有多少个点

【答案】染成61种颜色, 各种颜色的点数依次为2,3,…,19,20,22,23,…,61,62,63,

【解析】

1994个点可染成种颜色,且各种颜色的点数依小到大为,且满足,则可组成顶点颜色各不相同的多边形个数为.

(一)要使的值最大,则必须满足:

1. .事实上,若,因,与的值最大相矛盾.

2. 个值中,仅有一个等于2,其余个值都等于1.为此,

(1).事实上,若不然则必存在某一正整数使..

.

故当以分别换时,值增大,矛盾.

(2)恰有一个.为此

(i)至多有一个.若不然,则存在正整数.,有同时成立.,有,且.易证.时,的值增大,矛盾.

(ii)若,有 .由于为一奇一偶且,997为素数,所以只有,得,即说明以2495值增大.矛盾.所以,至少有一个成立.由(i),(ii)立得所证.

3. .2恰有一个,然而只能等于1不能等于2.若不然,则有..所以,.由于1993为素数,易求得.此与最大显然矛盾.设有某一数使得,则.,取,则,且...2值增大,矛盾..

(二)由(一)知可设各种颜色的点数依次为2,3,…,,…,).

.

.

解得.

,有.故可将1994个点染成61种颜色,各种颜色的点数依次为2,3,…,19,20,22,23,…,61,62,63,此时所得多边形为61边形,其个数为最多.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】双一流大学就业部从该校2018年已就业的大学本科毕业生中随机抽取了100人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在人民币1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率分布直方图:

1)将同一组数据用该区间的中点值作代表,求这100人月薪收入的样本平均数

2)该校在某地区就业的2018届本科毕业生共50人,决定于2019国庆长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:

方案一:设区间,月薪落在区间左侧的每人收取400元,月薪落在区间内的每人收取600元,月薪落在区间右侧的每人收取800元;

方案二:每人按月薪收入的样本平均数的收取;

用该校就业部统计的这100人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为是椭圆上一点,轴,.

1)求椭圆的标准方程;

2)若直线与椭圆交于两点,线段的中点为为坐标原点,且,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左,右顶点分别为,长轴长为,且经过点.

1)求椭圆的标准方程;

2)若为椭圆上异于的任意一点,证明:直线的斜率的乘积为定值;

3)已知两条互相垂直的直线都经过椭圆的右焦点,与椭圆交于四点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,若在曲线上存在点使得,则实数的取值范围为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在区间D上的函数:若存在闭区间和常数e,使得对任意,都有,且对任意,当时,恒成立,则称函数为区间D上的平底型函数.

1)判断函数是否为R上的平底型函数?并说明理由;

2)若函数是区间上的平底型函数,求mn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线的焦点的直线交抛物线于两点,线段的中点为.

(1)求动点的轨迹的方程;

(2)经过坐标原点的直线与轨迹交于两点,与抛物线交于点(),若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:

1证明直线l经过定点并求此点的坐标;

2若直线l不经过第四象限,求k的取值范围;

3若直线lx轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设的面积为S,求S的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案