精英家教网 > 高中数学 > 题目详情
如图所示,圆锥的轴截面为等腰直角为底面圆周上一点.

(1)若的中点为,求证平面
(2)如果,,求此圆锥的全面积.
(1)详见解析;(2).

试题分析:(1)要证平面,即证垂直于平面内的两条相交直线,是已知,转化为证平面,利用母线相等,利用底面半径相等,为中点,证得平面 ,证得,,得证;(2),求出底面半径,以及母线长,根据全面积公式,,求出全面积.
试题解析:解:①连接OC,
∵OQ=OB,C为QB的中点,∴OC⊥QB                        2分
∵SO⊥平面ABQ,BQ平面ABQ
∴SO⊥BQ,结合SO∩OC=0,可得BQ⊥平面SOC
∵OH?平面SOC,∴BQ⊥OH,                              5分
∵OH⊥SC,SC、BQ是平面SBQ内的相交直线,
∴OH⊥平面SBQ;                                          6分
②∵∠AOQ=60°,QB=,∴直角△ABQ中,∠ABQ=30°,
可得AB==4 8分
∵圆锥的轴截面为等腰直角△SAB,
∴圆锥的底面半径为2,高SO=2,可得母线SA=2
因此,圆锥的侧面积为S=π×2×2=4π                       10分
∴此圆锥的全面积为S+S=4π+π×22=(4+4)π    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图(1)所示,△ABC是等腰直角三角形,AC=BC=4,E、F分别为AC、AB的中点,将△AEF沿EF折起,使A′在平面BCEF上的射影O恰为EC的中点,得到图(2).

(1)求证:EF⊥A′C;
(2)求三棱锥FA′BC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四面体ABCD中,△ABC与△DBC都是边长为4的正三角形.

(1)求证:BCAD
(2)试问该四面体的体积是否存在最大值?若存在,求出这个最大值及此时棱长AD的大小;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在棱长为的正方体中,点分别是矩形的中心,则过点的平面截正方体的截面面积为______

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四面体的六条棱中,有五条棱长都等于a.
(1)求该四面体的体积的最大值;
(2)当四面体的体积最大时,求其表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正方形ABCD的边长为2,E、F分别为BC、DC的中点,沿AE、EF、AF折成一个四面体,使B、C、D三点重合,则这个四面体的体积为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个三棱柱的侧棱垂直于底面,且所有棱长都为a,则此三棱柱的外接球的表面积为( )
A.πa2B.15πa2C.πa2D.πa2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,直三棱柱中,,则该三棱柱的侧面积为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果两个球的体积之比为8:27,那么两个球的表面积之比为(  )
A.8:27B.2:3C.4:9D.2:9

查看答案和解析>>

同步练习册答案