精英家教网 > 高中数学 > 题目详情
1.已知f(x)=4${\;}^{(co{s^2}x)}}$+4${\;}^{(si{n^2}x)}}$,则f(x)的最小值等于4.

分析 根据基本不等式即可求出.

解答 解:f(x)=4${\;}^{(co{s^2}x)}}$+4${\;}^{(si{n^2}x)}}$≥2$\sqrt{{4}^{co{s}^{2}x+si{n}^{2}x}}$=4,当且仅当sin2x=cos2x取等号,
 故f(x)的最小值等于4
故答案为:4

点评 本题考查了基本不等式的应用,掌握一定二定三相等,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(-1,k),若$\overrightarrow a$⊥(2$\overrightarrow a$-$\overrightarrow b$),则k=(  )
A.-12B.12C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=Asin(ωx+φ)A>0且ω>0,0<φ<$\frac{π}{2}$的部分图象,如图所示.
(1)求函数f(x)的解析式;
(2)已知f(2x0)=-$\frac{{\sqrt{3}}}{2}$,x0∈(0,$\frac{5π}{6}$),求x0的值;
(3)若函数h(x)=2f(x)-a在[0,$\frac{4π}{3}$]上有两个不同的零点,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知黄河游览区有两艘游船,两艘游船每天上午11点出发,下午3点至5点之间返回码头,假如码头只有一个泊位,每艘游船需要停靠码头15分钟游客下完后即驶离码头,每艘油船返回时在下午3点至5点之间的任何一时刻停靠码头是等可能的,求你乘坐一艘游船游览黄河游览区,下午返回码头时,停船的泊位是空的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{3}$sin xcos x-$\frac{1}{2}$cos2x-$\frac{1}{2}$.
(1)求f(x)的最小正周期和单调递增区间;
(2)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的最大值和最小值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$f(x)=\left\{\begin{array}{l}{{x}^{2},x≥2}\\{x+3,x<2}\end{array}\right.$,若f(a)+f(3)=0,则实数a=-12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=loga(2x-3)(a>0且a≠1),
(1)求f(x)函数的定义域;
(2)求使f(x)>0成立的x的取值范围;
(3)当x∈[2,5],求f(x)函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元;未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了160盒该产品,以x(单位:盒,100≤x≤200)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.
(1)根据直方图估计这个开学季内市场需求量x的中位数;
(2)将y表示为x的函数;
(3)根据直方图估计利润不少于4800元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线3x2-y2=k的焦距是8,则k的值为(  )
A.±12B.12C.±48D.48

查看答案和解析>>

同步练习册答案