精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$f(x)=\left\{\begin{array}{l}{{x}^{2},x≥2}\\{x+3,x<2}\end{array}\right.$,若f(a)+f(3)=0,则实数a=-12.

分析 利用分段函数求出f(3)的值,判断方程a的范围,列出方程求解即可.

解答 解:函数$f(x)=\left\{\begin{array}{l}{{x}^{2},x≥2}\\{x+3,x<2}\end{array}\right.$,f(3)=9,
f(a)+f(3)=0,可得f(a)=-9,所以a<2,
可得a+3=-9,
解得a=-12.
故答案为:-12.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.抛物线$x=\frac{1}{4}{y^2}$的焦点到双曲线x2-y2=2的渐近线的距离是(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=x-$\frac{a}{x}$(a>0),g(x)=2lnx.
(1)若对[1,+∞)内的一切实数x,不等式f(x)≥g(x)恒成立,求实数a的取值范围;
(2)当a=1时,求最大的正整数k,使得对[e,3](e=2.71828…是自然对数的底数)内的任意k个实数x1,x2,…,xk都有f(x1)+f(x2)+…+f(xk-1)≤16g(xk)成立;
(3)求证:$\sum_{i=1}^{n}\frac{4i}{4{i}^{2}-1}$>ln(2n+1),(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2(x<0)}\\{(a-3)x+4a(x≥0)}\end{array}\right.$,在R上是减函数,则a的取值范围是(  )
A.(-∞,$\frac{1}{2}$]B.(0,1)C.[$\frac{1}{2}$,3)D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)=4${\;}^{(co{s^2}x)}}$+4${\;}^{(si{n^2}x)}}$,则f(x)的最小值等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知幂函数f(x)=x${\;}^{({m}^{2}+m)^{-1}}$(m∈N+)经过点(2,$\sqrt{2}$),试确定m的值,并满足条件f(2-a)>f(a-1)的实数a的取值范围$[1,\frac{3}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.f(x)的定义域为[-2,3],则f(2x+1)的定义域为[-$\frac{3}{2}$,1](用区间表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题:p:?x∈R,3x>0;命题:q:?x∈R,log${\;}_{\frac{1}{2}}}$x02<0.以下命题为真命题的是(  )
A.p∧qB.(¬p)∧(¬q)C.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF,若|AB|=10,|AF|=6,cos∠FAB=$\frac{3}{5}$,则C的离心率e=$\frac{5}{7}$.

查看答案和解析>>

同步练习册答案