精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2(x<0)}\\{(a-3)x+4a(x≥0)}\end{array}\right.$,在R上是减函数,则a的取值范围是(  )
A.(-∞,$\frac{1}{2}$]B.(0,1)C.[$\frac{1}{2}$,3)D.(0,3)

分析 由题意可得,$\left\{\begin{array}{l}{a-3<0}\\{(a-3)•0+4a≤2}\end{array}\right.$,由此求得a的范围.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2(x<0)}\\{(a-3)x+4a(x≥0)}\end{array}\right.$,在R上是减函数,∴$\left\{\begin{array}{l}{a-3<0}\\{(a-3)•0+4a≤2}\end{array}\right.$,
求得a≤$\frac{1}{2}$,
故选:A.

点评 本题主要考查函数的单调性的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知幂函数$f(x)={x^{{m^2}-2m-3}}(m∈Z)$为偶函数,且在(0,+∞)上是减函数,则f(x)的解析式是f(x)=x-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow m$=(2sinx,1),$\overrightarrow n$=($\sqrt{3}$cosx,2cos2x),函数f(x)=$\overrightarrow m$•$\overrightarrow n$-t.
( I)若方程f(x)=0在x∈[0,$\frac{π}{2}$]上有解,求t的取值范围;
(II)在△ABC中,a,b,c分别是A,B,C所对的边,当t=3且f(A)=-1,b+c=2时,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.先后抛掷质地均匀的硬币两次,则“一次正面向上,一次反面向上”的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知黄河游览区有两艘游船,两艘游船每天上午11点出发,下午3点至5点之间返回码头,假如码头只有一个泊位,每艘游船需要停靠码头15分钟游客下完后即驶离码头,每艘油船返回时在下午3点至5点之间的任何一时刻停靠码头是等可能的,求你乘坐一艘游船游览黄河游览区,下午返回码头时,停船的泊位是空的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=3-2|x|,g(x)=x2,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x),那么F(x)(  )
A.有最大值1,且为偶函数B.有最大值3,且为偶函数
C.有最小值1,且为非奇非偶函数D.无最值,且为非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$f(x)=\left\{\begin{array}{l}{{x}^{2},x≥2}\\{x+3,x<2}\end{array}\right.$,若f(a)+f(3)=0,则实数a=-12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B={1,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=-x+$\frac{1}{2x}$,求证:
(1)函数f(x)是奇函数; 
(2)函数f(x)在区间(0,+∞)上是减函数.

查看答案和解析>>

同步练习册答案