| A. | (-∞,$\frac{1}{2}$] | B. | (0,1) | C. | [$\frac{1}{2}$,3) | D. | (0,3) |
分析 由题意可得,$\left\{\begin{array}{l}{a-3<0}\\{(a-3)•0+4a≤2}\end{array}\right.$,由此求得a的范围.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2(x<0)}\\{(a-3)x+4a(x≥0)}\end{array}\right.$,在R上是减函数,∴$\left\{\begin{array}{l}{a-3<0}\\{(a-3)•0+4a≤2}\end{array}\right.$,
求得a≤$\frac{1}{2}$,
故选:A.
点评 本题主要考查函数的单调性的性质,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有最大值1,且为偶函数 | B. | 有最大值3,且为偶函数 | ||
| C. | 有最小值1,且为非奇非偶函数 | D. | 无最值,且为非奇非偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com