精英家教网 > 高中数学 > 题目详情

【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类菠菜.根据统计,该基地的西红种增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.依据折线图及其提供的数据,是否可用线性回归模型拟合yx的关系?如果可以,请计算相关系数r并加以说明(精确到0.01),(若,则线性相关程度很高,可用线性回归模型拟合)

附:相关系数公式,参考数据:

【答案】可用线性回归摸型拟合yx的关系,

【解析】

由由题意求出,代入公式求值,从而得到回归直线方程.

如图、连结其中两点得一直线可以知道相关数据对应的点在直线附近.所以可用线性回归模型拟合yx的关系,

由已知数据可得

因为

所以相关系数

因为,所以可用线性回归摸型拟合yx的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)求的单调区间和极值;

(2)证明:若存在零点,则在区间上仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地拟在一个U形水面PABQ(∠A=B=90°)上修一条堤坝(EAP上,NBQ上),围出一个封闭区域EABN,用以种植水生植物.为了美观起见,决定从AB上点M处分别向点EN2条分隔线MEMN,将所围区域分成3个部分(如图),每部分种植不同的水生植物.已知AB=aEM=BM,∠MEN=90°,设所拉分隔线总长度为l

1)设∠AME=2θ,求用θ表示的l函数表达式,并写出定义域;

2)求l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Sn为等比数列的前n项和,已知S2=2,S3=-6.

(1)求的通项公式;

(2)求Sn,并判断Sn+1SnSn+2是否成等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,EAB的中点将沿直线DE折起到的位置,使平面平面BCDE

1)证明:平面PDE

2)设F为线段PC的中点,求四面体D-PEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,是函数图象上的任意两点,且角的终边经过点,,的最小值为

1)求函数的解析式;

2)若方程内有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,若的单调区间;

2)当时,若存在唯一的零点,且,其中,求.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱中,平面是线段上的动点,是线段上的中点.

(Ⅰ)证明:

(Ⅱ)若,且直线所成角的余弦值为,试指出点在线段上的位置,并求三棱锥的体积.

查看答案和解析>>

同步练习册答案