精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若,若的单调区间;

2)当时,若存在唯一的零点,且,其中,求.

(参考数据:

【答案】1单调递减区间为单调递增区间为;(2 .

【解析】

1)将代入函数解析式,求得并令,即可由导函数的符号判断单调区间.

2)将代入函数解析式,求得.结合定义域及二次函数性质可知的单调区间,并根据零点意义代入方程和函数,可得零点的函数表达式.构造函数,并求得可证明的单调性,结合零点存在定理及所给参考数据,即可求得的值.

1)将代入函数解析式可得,定义域为

,解得(舍),

所以当时,

时,

的单调递减区间为的单调递增区间为.

2)将代入函数解析式可得

因为,且对于来说,

所以有两个不等式实数根

所以两根异号,不妨设

则由定义域为可得内递减,在内递增,

因为

存在唯一的零点,且,则

所以,化简可得.

所以时单调递减,

由题可知

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在内为优质品.从两个企业生产的零件中各随机抽出了件,测量这些零件的质量指标值,得结果如下表:

甲企业:

分组

频数

5

乙企业:

分组

频数

5

5

1)已知甲企业的件零件质量指标值的样本方差,该企业生产的零件质量指标值X服从正态分布,其中μ近似为质量指标值的样本平均数(注:求时,同一组中的数据用该组区间的中点值作代表),近似为样本方差,试根据企业的抽样数据,估计所生产的零件中,质量指标值不低于的产品的概率.(精确到

2)由以上统计数据完成下面列联表,并判断能否在犯错误的概率不超过的前提下认为两个企业生产的零件的质量有差异.

甲厂

乙厂

总计

优质品

非优质品

总计

附:

参考数据:

参考公式:若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类菠菜.根据统计,该基地的西红种增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.依据折线图及其提供的数据,是否可用线性回归模型拟合yx的关系?如果可以,请计算相关系数r并加以说明(精确到0.01),(若,则线性相关程度很高,可用线性回归模型拟合)

附:相关系数公式,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2002年8月在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,设直角三角形中较小的锐角为,大正方形的面积是1,小正方形的面积是.若,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列的公差为项和为的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中,若的三条边长,则下列结论中正确的是( )

①存在,使不能构成一个三角形的三条边

②对一切,都有

③若为钝角三角形,则存在,使

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直棱柱

I)证明:

II)求直线所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线(其中)的焦点的直线交抛物线于两点,且两点的纵坐标之积为

(1)求抛物线的方程;

(2)当时,求的值;

(3)对于轴上给定的点(其中),若过点两点的直线交抛物线的准线点,求证:直线轴交于一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司的营销部门对某件商品在网上销售情况进行调查,发现当这件商品每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过统计得到以下表:

1)经分析发现,可用线性回归模型拟合该商品销量(百件)与返还点数之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测若返回6个点时该商品每天销量;

2)该公司为了在购物节期间对所有商品价格进行新一轮调整,随机抽查了上一年购物节期间60名网友的网购金额情况,得到如下数据统计表:

网购金额

(单位:千元)

合计

频数

3

9

9

15

18

6

60

若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定义为“非网购达人”.该营销部门为了进步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定10人,若需从这10人中随机选取3人进行问卷调查.为选取的3人中“网购达人”的人数,求的分布列和数学期望.

参考公式及数据:①;②.

查看答案和解析>>

同步练习册答案